Peptide-Based Strategies for Targeted Tumor Treatment and Imaging

Pharmaceutics - Tập 13 Số 4 - Trang 481
Abiodun Ayo1, Pirjo Laakkonen2,1
1Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
2Laboratory Animal Center, HiLIFE—Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland

Tóm tắt

Cancer is one of the leading causes of death worldwide. The development of cancer-specific diagnostic agents and anticancer toxins would improve patient survival. The current and standard types of medical care for cancer patients, including surgery, radiotherapy, and chemotherapy, are not able to treat all cancers. A new treatment strategy utilizing tumor targeting peptides to selectively deliver drugs or applicable active agents to solid tumors is becoming a promising approach. In this review, we discuss the different tumor-homing peptides discovered through combinatorial library screening, as well as native active peptides. The different structure–function relationship data that have been used to improve the peptide’s activity and conjugation strategies are highlighted.

Từ khóa


Tài liệu tham khảo

Achour, 2020, Mass Spectrometry of Human Transporters, Annual Rev. Anal. Chem., 13, 223, 10.1146/annurev-anchem-091719-024553

Bhattacherjee, A., and Wallin, S. (2013). Exploring Protein-Peptide Binding Specificity through Computational Peptide Screening. PLoS Comput. Biol., 9.

Kelil, A., Dubreuil, B., Levy, E.D., and Michnick, S.W. (2017). Exhaustive Search of Linear Information Encoding Protein-Peptide Recognition. PLoS Comput. Biol., 13.

Kell, 2016, Implications of Endogenous Roles of Transporters for Drug Discovery: Hitchhiking and Metabolite-Likeness, Nat. Rev. Drug Discov., 15, 143-143, 10.1038/nrd.2015.44

Vlachodimou, 2019, Label-Free Detection of Transporter Activity via GPCR Signalling in Living Cells: A Case for SLC29A1, the Equilibrative Nucleoside Transporter 1, Sci. Rep., 9, 13802, 10.1038/s41598-019-48829-3

Teesalu, 2012, Mapping of Vascular ZIP Codes by Phage Display, Methods in Enzymology, Volume 503, 35, 10.1016/B978-0-12-396962-0.00002-1

Fogal, 2008, Mitochondrial/Cell-Surface Protein P32/GC1qR as a Molecular Target in Tumor Cells and Tumor Stroma, Cancer Res., 68, 7210, 10.1158/0008-5472.CAN-07-6752

Hyvonen, 2014, Novel Target for Peptide-Based Imaging and Treatment of Brain Tumors, Mol. Cancer Ther., 13, 996, 10.1158/1535-7163.MCT-13-0684

Arap, 2004, Cell Surface Expression of the Stress Response Chaperone GRP78 Enables Tumor Targeting by Circulating Ligands, Cancer Cell, 6, 275, 10.1016/j.ccr.2004.08.018

Christian, 2003, Nucleolin Expressed at the Cell Surface Is a Marker of Endothelial Cells in Angiogenic Blood Vessels, J. Cell Biol., 163, 871, 10.1083/jcb.200304132

Johansson, 2008, Characterization of a Novel Cytotoxic Cell-penetrating Peptide Derived From P14ARF Protein, Mol. Ther., 16, 115, 10.1038/sj.mt.6300346

Ayo, A., Figueras, E., Schachtsiek, T., Budak, M., Sewald, N., and Laakkonen, P. (2020). Tumor-Targeting Peptides: The Functional Screen of Glioblastoma Homing Peptides to the Target Protein FABP3 (MDGI). Cancers, 12.

Lee, 2001, Receptor Mediated Uptake of Peptides That Bind the Human Transferrin Receptor: Peptide Endocytosis by the Transferrin Receptor, Eur. J. Biochem., 268, 2004, 10.1046/j.1432-1327.2001.02073.x

Demeule, 2008, Involvement of the Low-Density Lipoprotein Receptor-Related Protein in the Transcytosis of the Brain Delivery Vector Angiopep-2, J. Neurochem., 106, 1534, 10.1111/j.1471-4159.2008.05492.x

Hong, 2008, Phage Display Selection of Peptides That Home to Atherosclerotic Plaques: IL-4 Receptor as a Candidate Target in Atherosclerosis, J. Cell. Mol. Med., 12, 2003, 10.1111/j.1582-4934.2008.00189.x

Koivunen, 1993, Selection of Peptides Binding to the Alpha 5 Beta 1 Integrin from Phage Display Library, J. Biol. Chem., 268, 20205, 10.1016/S0021-9258(20)80715-7

Pasqualini, 1997, Αv Integrins as Receptors for Tumor Targeting by Circulating Ligands, Nat. Biotechnol., 15, 542, 10.1038/nbt0697-542

Arap, 1998, Cancer Treatment by Targeted Drug Delivery to Tumor Vasculature in a Mouse Model, Science, 279, 377, 10.1126/science.279.5349.377

Alberici, 2013, De Novo. Design of a Tumor-Penetrating Peptide, Cancer Res., 73, 804, 10.1158/0008-5472.CAN-12-1668

Gurrath, 1992, Conformation/Activity Studies of Rationally Designed Potent Anti-Adhesive RGD Peptides, Eur. J. Biochem., 210, 911, 10.1111/j.1432-1033.1992.tb17495.x

Dechantsreiter, 1999, N -Methylated Cyclic RGD Peptides as Highly Active and Selective α V β 3 Integrin Antagonists, J. Med. Chem., 42, 3033, 10.1021/jm970832g

Laakkonen, 2002, A Tumor-Homing Peptide with a Targeting Specificity Related to Lymphatic Vessels, Nat. Med., 8, 751, 10.1038/nm720

Li, 2005, Identification and Characterization of a Novel Peptide Ligand of Epidermal Growth Factor Receptor for Targeted Delivery of Therapeutics, FASEB J., 19, 1978, 10.1096/fj.05-4058com

Koivunen, 1999, Tumor Targeting with a Selective Gelatinase Inhibitor, Nat. Biotechnol., 17, 768, 10.1038/11703

Medina, 2005, Radionuclide Imaging of Tumor Xenografts in Mice Using a Gelatinase-Targeting Peptide, Anticancer Res., 25, 33

Wang, 2009, Targeting Gelatinases with a Near-Infrared Fluorescent Cyclic His-Try-Gly-Phe Peptide, Mol. Imaging Biol., 11, 424, 10.1007/s11307-009-0219-y

Pero, 2002, Identification of Novel Non-Phosphorylated Ligands, Which Bind Selectively to the SH2 Domain of Grb7, J. Biol. Chem., 277, 11918, 10.1074/jbc.M111816200

Scodeller, 2017, Precision Targeting of Tumor Macrophages with a CD206 Binding Peptide, Sci. Rep., 7, 14655, 10.1038/s41598-017-14709-x

Brodin, 1997, A Truncated HIV-1 Tat Protein Basic Domain Rapidly Translocates through the Plasma Membrane and Accumulates in the Cell Nucleus, J. Biol. Chem., 272, 16010, 10.1074/jbc.272.25.16010

Derossi, 1994, The Third Helix of the Antennapedia Homeodomain Translocates through Biological Membranes, J. Biol. Chem., 269, 10444, 10.1016/S0021-9258(17)34080-2

Sugahara, 2009, Tissue-Penetrating Delivery of Compounds and Nanoparticles into Tumors, Cancer Cell, 16, 510, 10.1016/j.ccr.2009.10.013

Roth, 2012, Transtumoral Targeting Enabled by a Novel Neuropilin-Binding Peptide, Oncogene, 31, 3754, 10.1038/onc.2011.537

Lingasamy, 2020, Tumor-Penetrating Peptide for Systemic Targeting of Tenascin-C, Sci. Rep., 10, 5809, 10.1038/s41598-020-62760-y

Bauer, 1982, SMS 201-995: A Very Potent and Selective Octapeptide Analogue of Somatostatin with Prolonged Action, Life Sci., 31, 1133, 10.1016/0024-3205(82)90087-X

Froidevaux, 2004, A Gallium-Labeled DOTA-Alpha-Melanocyte- Stimulating Hormone Analog for PET Imaging of Melanoma Metastases, J. Nucl. Med., 45, 116

Clackson, T., and Lowman, H.B. (2004). Phage Display: A Practical Approach, Oxford University Press.

Pardridge, 1987, Human Blood-Brain Barrier Transferrin Receptor, Metabolism, 36, 892, 10.1016/0026-0495(87)90099-0

Jefferies, 1984, Transferrin Receptor on Endothelium of Brain Capillaries, Nature, 312, 162, 10.1038/312162a0

Heidenreich, 1985, Structural and Functional Characteristics of Insulin Receptors in Rat Neuroblastoma Cells, J. Neurochem., 45, 1642, 10.1111/j.1471-4159.1985.tb07237.x

Grunberger, 1986, Insulin Receptor of Human Cerebral Gliomas. Structure and Function, J Clin. Investig., 77, 997, 10.1172/JCI112402

Havrankova, 1978, Insulin Receptors Are Widely Distributed in the Central Nervous System of the Rat, Nature, 272, 827, 10.1038/272827a0

Posner, 1979, Insulin Binds to Brain Blood Vessels in Vivo, Nature, 282, 623, 10.1038/282623a0

Frank, 1981, A Direct in Vitro Demonstration of Insulin Binding to Isolated Brain Microvessels, Diabetes, 30, 757, 10.2337/diab.30.9.757

Pardridge, 1985, Human Blood?Brain Barrier Insulin Receptor, J. Neurochem., 44, 1771, 10.1111/j.1471-4159.1985.tb07167.x

Dick, 1984, Identification and Characterization of the Glucose Transporter of the Blood-Brain Barrier by Cytochalasin B Binding and Immunological Reactivity, Proc. Natl. Acad. Sci. USA, 81, 7233, 10.1073/pnas.81.22.7233

Pardridge, 1990, Brain-Type Glucose Transporter (GLUT-1) Is Selectively Localized to the Blood-Brain Barrier. Studies with Quantitative Western Blotting and in Situ Hybridization, J. Biol. Chem., 265, 18035, 10.1016/S0021-9258(18)38267-X

Kasanicki, 1989, Immunocytochemical Localization of the Glucose-Transport Protein in Mammalian Brain Capillaries, Histochem. J., 21, 47, 10.1007/BF01002471

Gerhart, 1989, Glucose Transporter Localization in Brain Using Light and Electron Immunocytochemistry, J. Neurosci. Res., 22, 464, 10.1002/jnr.490220413

Roberts, 2008, Subcellular Localization of Transporters along the Rat Blood–Brain Barrier and Blood–Cerebral-Spinal Fluid Barrier by in Vivo Biotinylation, Neuroscience, 155, 423, 10.1016/j.neuroscience.2008.06.015

Kobayashi, 2008, enhanced tumor growth elicited by L-Type amino acid transporter 1 in human malignant glioma cells, Neurosurgery, 62, 493, 10.1227/01.neu.0000316018.51292.19

Killian, 2001, Predominant Functional Activity of the Large, Neutral Amino Acid Transporter (LAT1) Isoform at the Cerebrovasculature, Neurosci. Lett., 306, 1, 10.1016/S0304-3940(01)01810-9

Kanai, 1998, Expression Cloning and Characterization of a Transporter for Large Neutral Amino Acids Activated by the Heavy Chain of 4F2 Antigen (CD98), J. Biol. Chem., 273, 23629, 10.1074/jbc.273.37.23629

Boado, 1999, Selective Expression of the Large Neutral Amino Acid Transporter at the Blood-Brain Barrier, Proc. Natl. Acad. Sci. USA, 96, 12079, 10.1073/pnas.96.21.12079

Dehouck, 1997, A New Function for the LDL Receptor: Transcytosis of LDL across the Blood-Brain Barrier, J. Cell Biol., 138, 877, 10.1083/jcb.138.4.877

Pitas, 1987, Astrocytes Synthesize Apolipoprotein E and Metabolize Apolipoprotein E-Containing Lipoproteins, Biochim. Biophys. Acta (BBA) Lipids Lipid Metab., 917, 148, 10.1016/0005-2760(87)90295-5

Yepes, 2003, Tissue-Type Plasminogen Activator Induces Opening of the Blood-Brain Barrier via the LDL Receptor-Related Protein, J. Clin. Investig., 112, 1533, 10.1172/JCI200319212

May, 2005, Molecular Mechanisms of Lipoprotein Receptor Signalling, Cell. Mol. Life Sci., 62, 2325, 10.1007/s00018-005-5231-z

Yamamoto, 1998, Expression and Cellular Localization of Low-Density Lipoprotein Receptor-Related Protein/Alpha 2-Macroglobulin Receptor in Human Glioblastoma in Vivo, Brain Tumor Pathol., 15, 23, 10.1007/BF02482097

Gao, 2013, Glioma Targeting and Blood–Brain Barrier Penetration by Dual-Targeting Doxorubincin Liposomes, Biomaterials, 34, 5628, 10.1016/j.biomaterials.2013.03.097

Yang, 2017, An Epirubicin-Peptide Conjugate with Anticancer Activity Is Dependent upon the Expression Level of the Surface Transferrin Receptor, Mol. Med. Rep., 15, 323, 10.3892/mmr.2016.6004

Chen, 2017, Peptide-22 and Cyclic RGD Functionalized Liposomes for Glioma Targeting Drug Delivery Overcoming BBB and BBTB, ACS Appl. Mater. Interfaces, 9, 5864, 10.1021/acsami.6b15831

Ni, 2020, Transferrin Receptor 1 Targeted Optical Imaging for Identifying Glioma Margin in Mouse Models, J. Neurooncol., 148, 245, 10.1007/s11060-020-03527-3

Youn, 2014, A Myristoylated Cell-Penetrating Peptide Bearing a Transferrin Receptor-Targeting Sequence for Neuro-Targeted SiRNA Delivery, Mol. Pharm., 11, 486, 10.1021/mp400446v

Zou, 2020, Single SiRNA Nanocapsules for Effective SiRNA Brain Delivery and Glioblastoma Treatment, Adv. Mater., 32, 2000416, 10.1002/adma.202000416

Srimanee, 2016, Role of Scavenger Receptors in Peptide-Based Delivery of Plasmid DNA across a Blood–Brain Barrier Model, Int. J. Pharm., 500, 128, 10.1016/j.ijpharm.2016.01.014

Wu, 2020, The Blood–Brain Barrier Cell-Targeted Gene Delivery System to Enhance Nerve Growth Factor Protein Secretion in the Brain, ACS Biomater. Sci. Eng., 6, 6207, 10.1021/acsbiomaterials.0c01113

Feng, 2015, Mammary-Derived Growth Inhibitor Targeting Peptide-Modified PEG–PLA Nanoparticles for Enhanced Targeted Glioblastoma Therapy, Bioconjug. Chem., 26, 1850, 10.1021/acs.bioconjchem.5b00379

Pulgar, 2019, Transcytosis to Cross the Blood Brain Barrier, New Advancements and Challenges, Front. Neurosci., 12, 1019, 10.3389/fnins.2018.01019

Wirsching, 2016, Glioblastoma, Handbook of Clinical Neurology, Volume 134, 381, 10.1016/B978-0-12-802997-8.00023-2

Preusser, 2019, Molecular Targeted Therapy of Glioblastoma, Cancer Treat. Rev., 80, 101896, 10.1016/j.ctrv.2019.101896

Garofano, L., Migliozzi, S., Oh, Y.T., D’Angelo, F., Najac, R.D., Ko, A., Frangaj, B., Caruso, F.P., Yu, K., and Yuan, J. (2021). Pathway-Based Classification of Glioblastoma Uncovers a Mitochondrial Subtype with Therapeutic Vulnerabilities. Nat. Cancer.

Rivinoja, 2011, Identification of Homing Peptides Using the in Vivo Phage Display Technology, Methods Mol. Biol., 683, 401, 10.1007/978-1-60761-919-2_29

Kinnari, 2013, Tumour Homing Peptide-Functionalized Porous Silicon Nanovectors for Cancer Therapy, Biomaterials, 34, 9134, 10.1016/j.biomaterials.2013.08.034

Blouw, 2003, The Hypoxic Response of Tumors Is Dependent on Their Microenvironment, Cancer Cell, 4, 133, 10.1016/S1535-6108(03)00194-6

Kornfeld, 1969, The Effect of Metal Attachment to Human Apotransferrin on Its Binding to Reticulocytes, Biochim. Biophys. Acta (BBA) Protein Struct., 194, 25, 10.1016/0005-2795(69)90175-5

Hill, 1985, Transferrin Receptors in Rat Brain: Neuropeptide-like Pattern and Relationship to Iron Distribution, Proc. Natl. Acad. Sci. USA, 82, 4553, 10.1073/pnas.82.13.4553

Jandl, 1963, The plasma-to-cell cycle of transferrin*, J. Clin. Investig., 42, 314, 10.1172/JCI104718

Calzolari, 2010, Transferrin Receptor 2 Is Frequently and Highly Expressed in Glioblastomas, Transl. Oncol., 3, 123, 10.1593/tlo.09274

Nada, 2011, In Vitro and Initial In Vivo Evaluation of 68Ga-Labeled Transferrin Receptor (TfR) Binding Peptides as Potential Carriers for Enhanced Drug Transport into TfR Expressing Cells, Mol. Imaging Biol., 13, 332, 10.1007/s11307-010-0329-6

Brammer, 2008, A Target-Unrelated Peptide in an M13 Phage Display Library Traced to an Advantageous Mutation in the Gene II Ribosome-Binding Site, Anal. Biochem., 373, 88, 10.1016/j.ab.2007.10.015

Nguyen, 2014, Identification and Characterization of Mutant Clones with Enhanced Propagation Rates from Phage-Displayed Peptide Libraries, Anal. Biochem., 462, 35, 10.1016/j.ab.2014.06.007

Zade, 2017, Biased Selection of Propagation-Related TUPs from Phage Display Peptide Libraries, Amino Acids, 49, 1293, 10.1007/s00726-017-2452-z

Matochko, 2014, Prospective Identification of Parasitic Sequences in Phage Display Screens, Nucleic Acids Res., 42, 1784, 10.1093/nar/gkt1104

Thomas, 2010, Corruption of Phage Display Libraries by Target-Unrelated Clones: Diagnosis and Countermeasures, Anal. Biochem., 407, 237, 10.1016/j.ab.2010.07.037

Huang, 2012, MimoDB 2.0: A Mimotope Database and Beyond, Nucleic Acids Res., 40, D271, 10.1093/nar/gkr922

He, 2019, SAROTUP: A Suite of Tools for Finding Potential Target-Unrelated Peptides from Phage Display Data, Int. J. Biol. Sci., 15, 1452, 10.7150/ijbs.31957

Fillebeen, 1999, Receptor-Mediated Transcytosis of Lactoferrin through the Blood-Brain Barrier, J. Biol. Chem., 274, 7011, 10.1074/jbc.274.11.7011

Demeule, 2002, High Transcytosis of Melanotransferrin (P97) across the Blood-Brain Barrier, J. Neurochem., 83, 924, 10.1046/j.1471-4159.2002.01201.x

Demeule, 2008, Identification and Design of Peptides as a New Drug Delivery System for the Brain, J. Pharmacol. Exp. Ther., 324, 1064, 10.1124/jpet.107.131318

Bertrand, 2011, Influence of Glioma Tumour Microenvironment on the Transport of ANG1005 via Low-Density Lipoprotein Receptor-Related Protein 1, Br. J. Cancer, 105, 1697, 10.1038/bjc.2011.427

Demeule, 2008, Antitumour Activity of ANG1005, a Conjugate between Paclitaxel and the New Brain Delivery Vector Angiopep-2: Antitumour Activity of ANG1005, Br. J. Pharmacol., 155, 185, 10.1038/bjp.2008.260

Thomas, 2009, Uptake of ANG1005, A Novel Paclitaxel Derivative, Through the Blood-Brain Barrier into Brain and Experimental Brain Metastases of Breast Cancer, Pharm. Res., 26, 2486, 10.1007/s11095-009-9964-5

Kumthekar, 2020, ANG1005, a Brain-Penetrating Peptide–Drug Conjugate, Shows Activity in Patients with Breast Cancer with Leptomeningeal Carcinomatosis and Recurrent Brain Metastases, Clin. Cancer Res., 26, 2789, 10.1158/1078-0432.CCR-19-3258

Lindenberg, 2016, ANG1005 for Breast Cancer Brain Metastases: Correlation between 18F-FLT-PET after First Cycle and MRI in Response Assessment, Breast Cancer Res. Treat., 160, 51, 10.1007/s10549-016-3972-z

Drappatz, 2013, Phase I Study of GRN1005 in Recurrent Malignant Glioma, Clin. Cancer Res., 19, 1567, 10.1158/1078-0432.CCR-12-2481

Kurzrock, 2012, Safety, Pharmacokinetics, and Activity of GRN1005, a Novel Conjugate of Angiopep-2, a Peptide Facilitating Brain Penetration, and Paclitaxel, in Patients with Advanced Solid Tumors, Mol. Cancer Ther., 11, 308, 10.1158/1535-7163.MCT-11-0566

Hoyos-Ceballos, G.P., Ruozi, B., Ottonelli, I., Da Ros, F., Vandelli, M.A., Forni, F., Daini, E., Vilella, A., Zoli, M., and Tosi, G. (2020). PLGA-PEG-ANG-2 Nanoparticles for Blood–Brain Barrier Crossing: Proof-of-Concept Study. Pharmaceutics, 12.

Du, 2020, Dual-Targeting and Excretable Ultrasmall SPIONs for T 1 -Weighted Positive MR Imaging of Intracranial Glioblastoma Cells by Targeting the Lipoprotein Receptor-Related Protein, J. Mater. Chem. B, 8, 2296, 10.1039/C9TB02391G

Joshi, 2001, In Situ Expression of Interleukin-4 (IL-4) Receptors in Human Brain Tumors and Cytotoxicity of a Recombinant IL-4 Cytotoxin in Primary Glioblastoma Cell Cultures, Cancer Res., 61, 8058

Park, 2016, Development of a Novel Microbubble-Liposome Complex Conjugated with Peptide Ligands Targeting IL4R on Brain Tumor Cells, Oncol. Rep., 36, 131, 10.3892/or.2016.4836

Chi, 2015, Enhanced Delivery of Liposomes to Lung Tumor through Targeting Interleukin-4 Receptor on Both Tumor Cells and Tumor Endothelial Cells, J. Control. Release, 209, 327, 10.1016/j.jconrel.2015.05.260

Hanahan, 2000, The Hallmarks of Cancer, Cell, 100, 57, 10.1016/S0092-8674(00)81683-9

Ruoslahti, 2002, Specialization of Tumour Vasculature, Nat. Rev. Cancer, 2, 83, 10.1038/nrc724

Avraamides, 2008, Integrins in Angiogenesis and Lymphangiogenesis, Nat. Rev. Cancer, 8, 604, 10.1038/nrc2353

Pierschbacher, 1984, Cell Attachment Activity of Fibronectin Can Be Duplicated by Small Synthetic Fragments of the Molecule, Nature, 309, 30, 10.1038/309030a0

Pierschbacher, 1984, Variants of the Cell Recognition Site of Fibronectin That Retain Attachment-Promoting Activity, Proc. Natl. Acad. Sci. USA, 81, 5985, 10.1073/pnas.81.19.5985

Yamada, 1984, Dualistic Nature of Adhesive Protein Function: Fibronectin and Its Biologically Active Peptide Fragments Can Autoinhibit Fibronectin Function, J. Cell Biol., 99, 29, 10.1083/jcb.99.1.29

Humphries, 1986, A Synthetic Peptide from Fibronectin Inhibits Experimental Metastasis of Murine Melanoma Cells, Science, 233, 467, 10.1126/science.3726541

Humphries, 1986, Identification of an Alternatively Spliced Site in Human Plasma Fibronectin That Mediates Cell Type-Specific Adhesion, J. Cell Biol., 103, 2637, 10.1083/jcb.103.6.2637

Grant, 1989, Two Different Laminin Domains Mediate the Differentiation of Human Endothelial Cells into Capillary-like Structures in Vitro, Cell, 58, 933, 10.1016/0092-8674(89)90945-8

Suzuki, 1985, Complete Amino Acid Sequence of Human Vitronectin Deduced from CDNA. Similarity of Cell Attachment Sites in Vitronectin and Fibronectin, EMBO J., 4, 2519, 10.1002/j.1460-2075.1985.tb03965.x

Oldberg, 1986, Cloning and Sequence Analysis of Rat Bone Sialoprotein (Osteopontin) CDNA Reveals an Arg-Gly-Asp Cell-Binding Sequence, Proc. Natl. Acad. Sci. USA, 83, 8819, 10.1073/pnas.83.23.8819

Bourdon, 1989, Tenascin Mediates Cell Attachment through an RGD-Dependent Receptor, J. Cell Biol., 108, 1149, 10.1083/jcb.108.3.1149

Dedhar, 1987, A Cell Surface Receptor Complex for Collagen Type I Recognizes the Arg-Gly-Asp Sequence, J. Cell Biol., 104, 585, 10.1083/jcb.104.3.585

Aumailley, 1989, Cell Attachment Properties of Collagen Type VI and Arg-Gly-Asp Dependent Binding to Its Alpha 2(VI) and Alpha 3(VI) Chains, Exp. Cell Res., 181, 463, 10.1016/0014-4827(89)90103-1

Gardner, 1985, Interaction of Fibronectin with Its Receptor on Platelets, Cell, 42, 439, 10.1016/0092-8674(85)90101-1

Haverstick, 1985, Inhibition of Platelet Adhesion to Fibronectin, Fibrinogen, and von Willebrand Factor Substrates by a Synthetic Tetrapeptide Derived from the Cell-Binding Domain of Fibronectin, Blood, 66, 946, 10.1182/blood.V66.4.946.946

Plow, 1985, Related Binding Mechanisms for Fibrinogen, Fibronectin, von Willebrand Factor, and Thrombospondin on Thrombin-Stimulated Human Platelets, Blood, 66, 724, 10.1182/blood.V66.3.724.724

Plow, 1985, The Effect of Arg-Gly-Asp-Containing Peptides on Fibrinogen and von Willebrand Factor Binding to Platelets, Proc. Natl. Acad. Sci. USA, 82, 8057, 10.1073/pnas.82.23.8057

Jin, 2004, Integrins: Roles in Cancer Development and as Treatment Targets, Br. J. Cancer, 90, 561, 10.1038/sj.bjc.6601576

Dormond, 2002, Suppression of Tumor Angiogenesis through the Inhibition of Integrin Function and Signaling in Endothelial Cells: Which Side to Target?, Endothelium, 9, 151, 10.1080/10623320213635

Varner, J.A., and Cheresh, D.A. (1996). Tumor Angiogenesis and the Role of Vascular Cell Integrin Alphavbeta3. Important Adv. Oncol., 69–87.

Kim, 2004, Tumor Targeting by Doxorubicin-RGD-4C Peptide Conjugate in an Orthotopic Mouse Hepatoma Model, Int. J. Mol. Med., 14, 529

Curnis, 2004, Coupling Tumor Necrosis Factor-Alpha with AlphaV Integrin Ligands Improves Its Antineoplastic Activity, Cancer Res., 64, 565, 10.1158/0008-5472.CAN-03-1753

Wang, 2008, Integrin-Targeted Imaging and Therapy with RGD4C-TNF Fusion Protein, Mol. Cancer Ther., 7, 1044, 10.1158/1535-7163.MCT-07-2084

Zarovni, 2004, Inhibition of Tumor Growth by Intramuscular Injection of CDNA Encoding Tumor Necrosis Factor Alpha Coupled to NGR and RGD Tumor-Homing Peptides, Hum. Gene Ther., 15, 373, 10.1089/104303404322959524

Ellerby, 1999, Anti-Cancer Activity of Targeted pro-Apoptotic Peptides, Nat. Med., 5, 1032, 10.1038/12469

Hu, 2003, Comparison of Three Different Targeted Tissue Factor Fusion Proteins for Inducing Tumor Vessel Thrombosis, Cancer Res., 63, 5046

Dickerson, 2004, Enhancement of the Antiangiogenic Activity of Interleukin-12 by Peptide Targeted Delivery of the Cytokine to Alphavbeta3 Integrin, Mol. Cancer Res., 2, 663, 10.1158/1541-7786.663.2.12

Broxterman, 2002, Design, Synthesis, and Biological Evaluation of a Dual Tumor-Specific Motive Containing Integrin-Targeted Plasmin-Cleavable Doxorubicin Prodrug, Mol. Cancer Ther., 1, 901

Chen, 2004, 18F-Labeled RGD Peptide: Initial Evaluation for Imaging Brain Tumor Angiogenesis, Nucl. Med. Biol., 31, 179, 10.1016/j.nucmedbio.2003.10.002

Chen, 2004, MicroPET and Autoradiographic Imaging of Breast Cancer α v -Integrin Expression Using 18 F- and 64 Cu-Labeled RGD Peptide, Bioconjug. Chem., 15, 41, 10.1021/bc0300403

Haubner, 2004, [18F]Galacto-RGD: Synthesis, Radiolabeling, Metabolic Stability, and Radiation Dose Estimates, Bioconjug Chem., 15, 61, 10.1021/bc034170n

Haubner, 2001, Noninvasive Imaging of Alpha(v)Beta3 Integrin Expression Using 18F-Labeled RGD-Containing Glycopeptide and Positron Emission Tomography, Cancer Res., 61, 1781

Zhang, 2006, Quantitative PET Imaging of Tumor Integrin Alphavbeta3 Expression with 18F-FRGD2, J. Nucl. Med., 47, 113

Wu, 2005, MicroPET Imaging of Glioma Integrin {alpha}v{beta}3 Expression Using (64)Cu-Labeled Tetrameric RGD Peptide, J. Nucl. Med., 46, 1707

Wu, 2007, MicroPET of Tumor Integrin Alphavbeta3 Expression Using 18F-Labeled PEGylated Tetrameric RGD Peptide (18F-FPRGD4), J. Nucl. Med., 48, 1536, 10.2967/jnumed.107.040816

Liu, 2019, Diagnostic and Predictive Value of Using RGD PET/CT in Patients with Cancer: A Systematic Review and Meta-Analysis, Biomed. Res. Int., 2019, 8534761

Provost, 2019, [68Ga]RGD Versus [18F]FDG PET Imaging in Monitoring Treatment Response of a Mouse Model of Human Glioblastoma Tumor with Bevacizumab and/or Temozolomide, Mol. Imaging Biol., 21, 297, 10.1007/s11307-018-1224-9

Li, 2020, 18F-RGD PET/CT Imaging Reveals Characteristics of Angiogenesis in Non-Small Cell Lung Cancer, Transl. Lung Cancer Res., 9, 1324, 10.21037/tlcr-20-187

Zhao, 2019, 68Ga-Labeled Dimeric and Trimeric Cyclic RGD Peptides as Potential PET Radiotracers for Imaging Gliomas, Appl. Radiat. Isot., 148, 168, 10.1016/j.apradiso.2019.03.033

Janssen, 2002, Tumor Targeting with Radiolabeled Alpha(v)Beta(3) Integrin Binding Peptides in a Nude Mouse Model, Cancer Res., 62, 6146

Janssen, 2002, Comparison of a Monomeric and Dimeric Radiolabeled RGD-Peptide for Tumor Targeting, Cancer Biother. Radiopharm., 17, 641

Shi, 2008, Improving Tumor Uptake and Excretion Kinetics of 99mTc-Labeled Cyclic Arginine-Glycine-Aspartic (RGD) Dimers with Triglycine Linkers, J. Med Chem., 51, 7980, 10.1021/jm801134k

Wang, 2008, 99mTc-Labeling of HYNIC-Conjugated Cyclic RGDfK Dimer and Tetramer Using EDDA as Coligand, Bioconjug. Chem., 19, 634, 10.1021/bc7004208

Wang, 2009, Improving Tumor-Targeting Capability and Pharmacokinetics of (99m)Tc-Labeled Cyclic RGD Dimers with PEG(4) Linkers, Mol. Pharm., 6, 231, 10.1021/mp800150r

Pirooznia, 2020, 177Lu-Labeled Cyclic RGD Peptide as an Imaging and Targeted Radionuclide Therapeutic Agent in Non-Small Cell Lung Cancer: Biological Evaluation and Preclinical Study, Bioorg. Chem., 102, 104100, 10.1016/j.bioorg.2020.104100

Auzzas, 2010, Targeting Alphavbeta3 Integrin: Design and Applications of Mono- and Multifunctional RGD-Based Peptides and Semipeptides, Curr. Med. Chem., 17, 1255, 10.2174/092986710790936301

Aumailley, 1991, Arg-Gly-Asp Constrained within Cyclic Pentapeptides. Strong and Selective Inhibitors of Cell Adhesion to Vitronectin and Laminin Fragment P1, FEBS Lett., 291, 50, 10.1016/0014-5793(91)81101-D

Xiong, 2002, Crystal Structure of the Extracellular Segment of Integrin Alpha Vbeta3 in Complex with an Arg-Gly-Asp Ligand, Science, 296, 151, 10.1126/science.1069040

Kapp, 2017, A Comprehensive Evaluation of the Activity and Selectivity Profile of Ligands for RGD-Binding Integrins, Sci. Rep., 7, 39805, 10.1038/srep39805

Kok, 2002, Preparation and Functional Evaluation of RGD-Modified Proteins as Alpha(v)Beta(3) Integrin Directed Therapeutics, Bioconjug. Chem., 13, 128, 10.1021/bc015561+

Saudek, 1991, Three-Dimensional Structure of Echistatin, the Smallest Active RGD Protein, Biochemistry, 30, 7369, 10.1021/bi00244a003

Lucie, 2009, Clustering and Internalization of Integrin Αvβ3 With a Tetrameric RGD-Synthetic Peptide, Mol. Ther., 17, 837, 10.1038/mt.2009.29

Beck, 2011, Increasing Αvβ3 Selectivity of the Anti-Angiogenic Drug Cilengitide by N-Methylation, Angew. Chem. Int. Ed., 50, 9496, 10.1002/anie.201102971

Reardon, 2008, Cilengitide: An Integrin-Targeting Arginine–Glycine–Aspartic Acid Peptide with Promising Activity for Glioblastoma Multiforme, Expert Opin. Investig. Drugs, 17, 1225, 10.1517/13543784.17.8.1225

Hariharan, 2007, Assessment of the Biological and Pharmacological Effects of the Alpha Nu Beta3 and Alpha Nu Beta5 Integrin Receptor Antagonist, Cilengitide (EMD 121974), in Patients with Advanced Solid Tumors, Ann. Oncol., 18, 1400, 10.1093/annonc/mdm140

Beekman, 2006, Phase II Evaluations of Cilengitide in Asymptomatic Patients with Androgen-Independent Prostate Cancer: Scientific Rationale and Study Design, Clin. Genitourin. Cancer, 4, 299, 10.3816/CGC.2006.n.012

Haddad, 2017, A Phase I Study of Cilengitide and Paclitaxel in Patients with Advanced Solid Tumors, Cancer Chemother. Pharmacol., 79, 1221, 10.1007/s00280-017-3322-9

Nabors, 2015, Two Cilengitide Regimens in Combination with Standard Treatment for Patients with Newly Diagnosed Glioblastoma and Unmethylated MGMT Gene Promoter: Results of the Open-Label, Controlled, Randomized Phase II CORE Study, Neuro. Oncol., 17, 708, 10.1093/neuonc/nou356

Weller, 2016, Cilengitide in Newly Diagnosed Glioblastoma: Biomarker Expression and Outcome, Oncotarget, 7, 15018, 10.18632/oncotarget.7588

Massabeau, 2018, Continuous Infusion of Cilengitide Plus Chemoradiotherapy for Patients With Stage III Non-Small-Cell Lung Cancer: A Phase I Study, Clin. Lung Cancer, 19, e277, 10.1016/j.cllc.2017.11.002

Reardon, 2008, Randomized Phase II Study of Cilengitide, an Integrin-Targeting Arginine-Glycine-Aspartic Acid Peptide, in Recurrent Glioblastoma Multiforme, J. Clin. Oncol., 26, 5610, 10.1200/JCO.2008.16.7510

Nabors, 2012, A Safety Run-in and Randomized Phase 2 Study of Cilengitide Combined with Chemoradiation for Newly Diagnosed Glioblastoma (NABTT 0306), Cancer, 118, 5601, 10.1002/cncr.27585

Stupp, 2010, Phase I/IIa Study of Cilengitide and Temozolomide with Concomitant Radiotherapy Followed by Cilengitide and Temozolomide Maintenance Therapy in Patients with Newly Diagnosed Glioblastoma, J. Clin. Oncol., 28, 2712, 10.1200/JCO.2009.26.6650

Eisele, 2014, Cilengitide Treatment of Newly Diagnosed Glioblastoma Patients Does Not Alter Patterns of Progression, J. Neurooncol., 117, 141, 10.1007/s11060-014-1365-x

Stupp, 2014, Cilengitide Combined with Standard Treatment for Patients with Newly Diagnosed Glioblastoma with Methylated MGMT Promoter (CENTRIC EORTC 26071-22072 Study): A Multicentre, Randomised, Open-Label, Phase 3 Trial, Lancet. Oncol., 15, 1100, 10.1016/S1470-2045(14)70379-1

Chinot, 2014, Cilengitide in Glioblastoma: When Did It Fail?, Lancet. Oncol., 15, 1044, 10.1016/S1470-2045(14)70403-6

Tucci, 2014, Does Cilengitide Deserve Another Chance?, Lancet. Oncol., 15, e584, 10.1016/S1470-2045(14)70462-0

Stupp, 2014, Does Cilengitide Deserve Another Chance?–Authors’ Reply, Lancet. Oncol., 15, e585, 10.1016/S1470-2045(14)71121-0

Koivunen, 1994, Isolation of a Highly Specific Ligand for the Alpha 5 Beta 1 Integrin from a Phage Display Library, J. Cell Biol., 124, 373, 10.1083/jcb.124.3.373

Curnis, 2002, Differential Binding of Drugs Containing the NGR Motif to CD13 Isoforms in Tumor Vessels, Epithelia, and Myeloid Cells, Cancer Res., 62, 867

Corti, 2008, The Neovasculature Homing Motif NGR: More than Meets the Eye, Blood, 112, 2628, 10.1182/blood-2008-04-150862

Curnis, 2006, Spontaneous Formation of L-Isoaspartate and Gain of Function in Fibronectin, J. Biol. Chem., 281, 36466, 10.1074/jbc.M604812200

Curnis, 2010, Critical Role of Flanking Residues in NGR-to-IsoDGR Transition and CD13/Integrin Receptor Switching, J. Biol. Chem., 285, 9114, 10.1074/jbc.M109.044297

Curnis, 2000, Enhancement of Tumor Necrosis Factor Alpha Antitumor Immunotherapeutic Properties by Targeted Delivery to Aminopeptidase N (CD13), Nat. Biotechnol., 18, 1185, 10.1038/81183

Curnis, 2002, Improving Chemotherapeutic Drug Penetration in Tumors by Vascular Targeting and Barrier Alteration, J. Clin. Invest., 110, 475, 10.1172/JCI0215223

Pastorino, 2003, Vascular Damage and Anti-Angiogenic Effects of Tumor Vessel-Targeted Liposomal Chemotherapy, Cancer Res., 63, 7400

Pastorino, 2006, Targeting Liposomal Chemotherapy via Both Tumor Cell-Specific and Tumor Vasculature-Specific Ligands Potentiates Therapeutic Efficacy, Cancer Res., 66, 10073, 10.1158/0008-5472.CAN-06-2117

Ma, 2016, Evaluation of (188)Re-Labeled NGR-VEGI Protein for Radioimaging and Radiotherapy in Mice Bearing Human Fibrosarcoma HT-1080 Xenografts, Tumour Biol., 37, 9121, 10.1007/s13277-016-4810-y

Tillmanns, 2015, PET Imaging of Cardiac Wound Healing Using a Novel [68Ga]-Labeled NGR Probe in Rat Myocardial Infarction, Mol. Imaging Biol., 17, 76, 10.1007/s11307-014-0751-2

Vats, 2018, 177Lu-Labeled Cyclic Asn-Gly-Arg Peptide Tagged Carbon Nanospheres as Tumor Targeting Radio-Nanoprobes, J. Pharm. Biomed. Anal., 152, 173, 10.1016/j.jpba.2018.01.052

Sacchi, 2006, Synergistic Antitumor Activity of Cisplatin, Paclitaxel, and Gemcitabine with Tumor Vasculature-Targeted Tumor Necrosis Factor-Alpha, Clin. Cancer Res., 12, 175, 10.1158/1078-0432.CCR-05-1147

Colombo, 2002, Structure-Activity Relationships of Linear and Cyclic Peptides Containing the NGR Tumor-Homing Motif, J. Biol. Chem., 277, 47891, 10.1074/jbc.M207500200

Laakkonen, 2004, Antitumor Activity of a Homing Peptide That Targets Tumor Lymphatics and Tumor Cells, Proc. Natl. Acad. Sci. USA, 101, 9381, 10.1073/pnas.0403317101

Hamzah, 2011, Specific Penetration and Accumulation of a Homing Peptide within Atherosclerotic Plaques of Apolipoprotein E-Deficient Mice, Proc. Natl. Acad. Sci. USA, 108, 7154, 10.1073/pnas.1104540108

Paasonen, 2016, New P32/GC1qR Ligands for Targeted Tumor Drug Delivery, ChemBioChem, 17, 570, 10.1002/cbic.201500564

Seo, 2014, (64)Cu-Labeled LyP-1-Dendrimer for PET-CT Imaging of Atherosclerotic Plaque, Bioconjug. Chem., 25, 231, 10.1021/bc400347s

She, 2016, Plaque-Penetrating Peptide Inhibits Development of Hypoxic Atherosclerotic Plaque, J. Control. Release, 238, 212, 10.1016/j.jconrel.2016.07.020

Ruoslahti, 2017, Tumor Penetrating Peptides for Improved Drug Delivery, Adv. Drug Deliv. Rev., 110–111, 3, 10.1016/j.addr.2016.03.008

Timur, 2018, Molecular Dynamics, Thermodynamic, and Mutational Binding Studies for Tumor-Specific LyP-1 in Complex with P32, J. Biomol. Struct. Dyn., 36, 1134, 10.1080/07391102.2017.1313779

Liu, 2017, Tumor-Targeting Peptides from Combinatorial Libraries, Adv. Drug Deliv. Rev., 110–111, 13, 10.1016/j.addr.2016.05.009

An, 2018, Epidermal Growth Factor Receptor and EGFRvIII in Glioblastoma: Signaling Pathways and Targeted Therapies, Oncogene, 37, 1561, 10.1038/s41388-017-0045-7

Sigismund, 2018, Emerging Functions of the EGFR in Cancer, Mol. Oncol., 12, 3, 10.1002/1878-0261.12155

Roskoski, 2019, Small Molecule Inhibitors Targeting the EGFR/ErbB Family of Protein-Tyrosine Kinases in Human Cancers, Pharmacol. Res., 139, 395, 10.1016/j.phrs.2018.11.014

Cheng, 2014, GE11-Modified Liposomes for Non-Small Cell Lung Cancer Targeting: Preparation, Ex Vitro and in Vivo Evaluation, Int. J. Nanomed., 9, 921, 10.2147/IJN.S53310

Allen, 2013, Liposomal Drug Delivery Systems: From Concept to Clinical Applications, Adv. Drug Deliv. Rev., 65, 36, 10.1016/j.addr.2012.09.037

Suprasert, 2014, Outcomes with Single Agent LIPO-DOX in Platinum-Resistant Ovarian and Fallopian Tube Cancers and Primary Peritoneal Adenocarcinoma - Chiang Mai University Hospital Experience, Asian Pac. J. Cancer Prev., 15, 1145, 10.7314/APJCP.2014.15.3.1145

Zou, 2018, GE11-Directed Functional Polymersomal Doxorubicin as an Advanced Alternative to Clinical Liposomal Formulation for Ovarian Cancer Treatment, Mol. Pharm., 15, 3664, 10.1021/acs.molpharmaceut.8b00024

Fang, 2017, EGFR-Targeted Multifunctional Polymersomal Doxorubicin Induces Selective and Potent Suppression of Orthotopic Human Liver Cancer in Vivo, Acta Biomater., 64, 323, 10.1016/j.actbio.2017.10.013

Li, 2020, Synthesis and Evaluation of [18F]FP-Lys-GE11 as a New Radiolabeled Peptide Probe for Epidermal Growth Factor Receptor (EGFR) Imaging, Nucl. Med. Biol., 90–91, 84, 10.1016/j.nucmedbio.2020.10.004

Striese, 2018, Exploring Pitfalls of 64Cu-Labeled EGFR-Targeting Peptide GE11 as a Potential PET Tracer, Amino Acids, 50, 1415, 10.1007/s00726-018-2616-5

Dejesus, 2012, Synthesis of [64Cu]Cu-NOTA-Bn-GE11 for PET Imaging of EGFR-Rich Tumors, Curr. Radiopharm., 5, 15, 10.2174/1874471011205010015

Paiva, 2020, Synthesis and Analysis of 64Cu-Labeled GE11-Modified Polymeric Micellar Nanoparticles for EGFR-Targeted Molecular Imaging in a Colorectal Cancer Model, Mol. Pharm., 17, 1470, 10.1021/acs.molpharmaceut.9b01043

Rahmanian, 2017, 99mTc-Radiolabeled GE11-Modified Peptide for Ovarian Tumor Targeting, DARU J. Pharm. Sci., 25, 13, 10.1186/s40199-017-0179-8

Jiao, 2020, Synthesis of a Novel 99mTc Labeled GE11 Peptide for EGFR SPECT Imaging, Int. J. Radiat. Biol., 96, 1443, 10.1080/09553002.2020.1811419

Egeblad, 2002, New Functions for the Matrix Metalloproteinases in Cancer Progression, Nat. Rev. Cancer, 2, 161, 10.1038/nrc745

Chambers, 1997, Changing Views of the Role of Matrix Metalloproteinases in Metastasis, J. Natl. Cancer Inst., 89, 1260, 10.1093/jnci/89.17.1260

Pellikainen, 2004, Expression of Matrix Metalloproteinase (MMP)-2 and MMP-9 in Breast Cancer with a Special Reference to Activator Protein-2, HER2, and Prognosis, Clin. Cancer Res., 10, 7621, 10.1158/1078-0432.CCR-04-1061

Sprague, 2006, In Vitro and in Vivo Investigation of Matrix Metalloproteinase Expression in Metastatic Tumor Models, Nucl. Med. Biol., 33, 227, 10.1016/j.nucmedbio.2005.10.011

Liu, 2015, Targeting of MMP2 Activity in Malignant Tumors with a 68 Ga-Labeled Gelatinase Inhibitor Cyclic Peptide, Nucl. Med. Biol., 42, 939, 10.1016/j.nucmedbio.2015.07.013

Stewart, 2000, Vascular Matrix Metalloproteinase-2–Dependent Cleavage of Calcitonin Gene-Related Peptide Promotes Vasoconstriction, Circ. Res., 87, 670, 10.1161/01.RES.87.8.670

Kawano, 2014, Systemic Delivery of Protein Nanocages Bearing CTT Peptides for Enhanced Imaging of MMP-2 Expression in Metastatic Tumor Models, Int. J. Mol. Sci., 16, 148, 10.3390/ijms16010148

Stein, 1994, The SH2 Domain Protein GRB-7 Is Co-Amplified, Overexpressed and in a Tight Complex with HER2 in Breast Cancer, EMBO J., 13, 1331, 10.1002/j.1460-2075.1994.tb06386.x

Fiddes, 1998, Analysis of Grb7 Recruitment by Heregulin-Activated ErbB Receptors Reveals a Novel Target Selectivity for ErbB3, J. Biol. Chem., 273, 7717, 10.1074/jbc.273.13.7717

Han, 1999, Association of Focal Adhesion Kinase with Grb7 and Its Role in Cell Migration, J. Biol. Chem., 274, 24425, 10.1074/jbc.274.34.24425

Yokote, 1996, Grb7 Is a Downstream Signaling Component of Platelet-Derived Growth Factor Alpha- and Beta-Receptors, J. Biol. Chem., 271, 30942, 10.1074/jbc.271.48.30942

Chu, P.-Y., Tai, Y.-L., and Shen, T.-L. (2019). Grb7, a Critical Mediator of EGFR/ErbB Signaling, in Cancer Development and as a Potential Therapeutic Target. Cells, 8.

Pero, 2007, Combination Treatment with Grb7 Peptide and Doxorubicin or Trastuzumab (Herceptin) Results in Cooperative Cell Growth Inhibition in Breast Cancer Cells, Br. J. Cancer, 96, 1520, 10.1038/sj.bjc.6603732

Pathria, 2019, Targeting Tumor-Associated Macrophages in Cancer, Trends Immunol., 40, 310, 10.1016/j.it.2019.02.003

Lewis, 2016, The Multifaceted Role of Perivascular Macrophages in Tumors, Cancer Cell, 30, 18, 10.1016/j.ccell.2016.05.017

Langel, Ü. (2007). Handbook of Cell-Penetrating Peptides, CRC Taylor & Francis.

Brooks, 2005, Tat Peptide-Mediated Cellular Delivery: Back to Basics, Adv. Drug Deliv. Rev., 57, 559, 10.1016/j.addr.2004.12.001

Ramsey, 2015, Cell-Penetrating Peptides Transport Therapeutics into Cells, Pharmacol. Ther., 154, 78, 10.1016/j.pharmthera.2015.07.003

Tan, 2006, Selective Inhibition of ErbB2-Overexpressing Breast Cancer in Vivo by a Novel TAT-Based ErbB2-Targeting Signal Transducers and Activators of Transcription 3-Blocking Peptide, Cancer Res., 66, 3764, 10.1158/0008-5472.CAN-05-2747

Lindberg, 2003, Structure and Positioning Comparison of Two Variants of Penetratin in Two Different Membrane Mimicking Systems by NMR, Eur. J. Biochem., 270, 3055, 10.1046/j.1432-1033.2003.03685.x

Prochiantz, 1996, Getting Hydrophilic Compounds into Cells: Lessons from Homeopeptides, Curr. Opin. Neurobiol., 6, 629, 10.1016/S0959-4388(96)80095-X

Ambaye, 2011, Uptake of a Cell Permeable G7-18NATE Contruct into Cells and Binding with the Grb-7-SH2 Domain, Biopolymers, 96, 181, 10.1002/bip.21403

Lakkadwala, 2019, Dual Functionalized Liposomes for Efficient Co-Delivery of Anti-Cancer Chemotherapeutics for the Treatment of Glioblastoma, J. Control. Release, 307, 247, 10.1016/j.jconrel.2019.06.033

Teesalu, 2009, C-End Rule Peptides Mediate Neuropilin-1-Dependent Cell, Vascular, and Tissue Penetration, Proc. Natl. Acad. Sci. USA, 106, 16157, 10.1073/pnas.0908201106

Teesalu, 2013, Tumor-Penetrating Peptides, Front. Oncol., 3, 216, 10.3389/fonc.2013.00216

Pang, 2014, A Free Cysteine Prolongs the Half-Life of a Homing Peptide and Improves Its Tumor-Penetrating Activity, J. Control. Release, 175, 48, 10.1016/j.jconrel.2013.12.006

Sugahara, 2010, Coadministration of a Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs, Science, 328, 1031, 10.1126/science.1183057

Zhang, 2016, Tumor-Penetration and Antitumor Efficacy of Cetuximab Are Enhanced by Co-Administered IRGD in a Murine Model of Human NSCLC, Oncol. Lett., 12, 3241, 10.3892/ol.2016.5081

Wang, 2020, Biomaterial-Based Scaffold for in Situ Chemo-Immunotherapy to Treat Poorly Immunogenic Tumors, Nat. Commun., 11, 5696, 10.1038/s41467-020-19540-z

Lu, 2020, An IRGD-Conjugated Prodrug Micelle with Blood-Brain-Barrier Penetrability for Anti-Glioma Therapy, Biomaterials, 230, 119666, 10.1016/j.biomaterials.2019.119666

Kang, 2014, INGR-Modified PEG-PLGA Nanoparticles That Recognize Tumor Vasculature and Penetrate Gliomas, Biomaterials, 35, 4319, 10.1016/j.biomaterials.2014.01.082

Javadpour, 1996, De Novo Antimicrobial Peptides with Low Mammalian Cell Toxicity, J. Med. Chem., 39, 3107, 10.1021/jm9509410

Hilchie, 2016, Mastoparan Is a Membranolytic Anti-Cancer Peptide That Works Synergistically with Gemcitabine in a Mouse Model of Mammary Carcinoma, Biochim. Biophys. Acta, 1858, 3195, 10.1016/j.bbamem.2016.09.021

Jones, 2008, Mitoparan and Target-Selective Chimeric Analogues: Membrane Translocation and Intracellular Redistribution Induces Mitochondrial Apoptosis, Biochim. Biophys. Acta, 1783, 849, 10.1016/j.bbamcr.2008.01.009

Connors, 2018, Brentuximab Vedotin with Chemotherapy for Stage III or IV Hodgkin’s Lymphoma, N. Engl. J. Med., 378, 331, 10.1056/NEJMoa1708984

Brazeau, 1973, Hypothalamic Polypeptide That Inhibits the Secretion of Immunoreactive Pituitary Growth Hormone, Science, 179, 77, 10.1126/science.179.4068.77

Krulich, 1968, Stimulatory and Inhibitory Effects of Purified Hypothalamic Extracts on Growth Hormone Release from Rat Pituitary in Vitro 1, Endocrinology, 83, 783, 10.1210/endo-83-4-783

Pyronnet, 2008, Antitumor Effects of Somatostatin, Mol. Cell Endocrinol., 286, 230, 10.1016/j.mce.2008.02.002

Theodoropoulou, 2013, Somatostatin Receptors: From Signaling to Clinical Practice, Front. Neuroendocrinol., 34, 228, 10.1016/j.yfrne.2013.07.005

Mizutani, 2012, Expression of Somatostatin Receptor (SSTR) Subtypes (SSTR-1, 2A, 3, 4 and 5) in Neuroendocrine Tumors Using Real-Time RT-PCR Method and Immunohistochemistry, Acta Histochem. Cytochem., 45, 167, 10.1267/ahc.12006

Bharti, 2017, Somatostatin Receptor Targeted Liposomes with Diacerein Inhibit IL-6 for Breast Cancer Therapy, Cancer Lett., 388, 292, 10.1016/j.canlet.2016.12.021

Frati, 2014, Expression of Somatostatin Type-2 and -4 Receptor and Correlation with Histological Type in Breast Cancer, Anticancer Res., 34, 3997

Schaer, 1997, Somatostatin Receptor Subtypes Sst1, Sst2, Sst3 and Sst5 Expression in Human Pituitary, Gastroentero-Pancreatic and Mammary Tumors: Comparison of MRNA Analysis with Receptor Autoradiography, Int. J. Cancer, 70, 530, 10.1002/(SICI)1097-0215(19970304)70:5<530::AID-IJC7>3.0.CO;2-Z

Halmos, 1994, Somatostatin Receptor Expression in Lung Cancer, Eur. J. Cancer, 30A, 1682

Menda, 2002, Somatostatin Receptor Imaging of Non-Small Cell Lung Cancer with 99mTc Depreotide, Semin. Nucl. Med., 32, 92, 10.1053/snuc.2002.31564

Reubi, 1991, In Vitro and in Vivo Detection of Somatostatin Receptors in Human Malignant Tissues, Acta Oncol., 30, 463, 10.3109/02841869109092402

Lamberts, 1996, Octreotide, N. Engl. J. Med., 334, 246, 10.1056/NEJM199601253340408

Neufeld, 1986, Endocrine Profile of a Long-Acting Somatostatin Derivative SMS 201–995. Study in Normal Volunteers Following Subcutaneous Administration, Acta Endocrinol., 111, 433

Figueras, E., Martins, A., Borbély, A., Le Joncour, V., Cordella, P., Perego, R., Modena, D., Pagani, P., Esposito, S., and Auciello, G. (2019). Octreotide Conjugates for Tumor Targeting and Imaging. Pharmaceutics, 11.

Lamberts, 2002, Somatostatin and Somatostatin Analogues: Diagnostic and Therapeutic Uses, Curr. Opin. Oncol., 14, 53, 10.1097/00001622-200201000-00010

Ghanem, 1988, Evidence for Alpha-Melanocyte-Stimulating Hormone (Alpha-MSH) Receptors on Human Malignant Melanoma Cells, Int. J. Cancer, 41, 248, 10.1002/ijc.2910410216

Eberle, 2017, Synthetic Peptide Drugs for Targeting Skin Cancer: Malignant Melanoma and Melanotic Lesions, Curr. Med. Chem., 24, 1797, 10.2174/0929867324666170605105942

Rosenkranz, 2013, Malignant Melanoma and Melanocortin 1 Receptor, Biochemistry, 78, 1228

Sahm, 1994, Synthesis and Biological Evaluation of Alpha-MSH Analogues Substituted with Alanine, Peptides, 15, 1297, 10.1016/0196-9781(94)90157-0

Yang, 2019, Evaluation of a Novel Pb-203-Labeled Lactam-Cyclized Alpha-Melanocyte-Stimulating Hormone Peptide for Melanoma Targeting, Mol. Pharm., 16, 1694, 10.1021/acs.molpharmaceut.9b00025

Yang, J., Xu, J., Gonzalez, R., Lindner, T., Kratochwil, C., and Miao, Y. (2018). 68Ga-DOTA-GGNle-CycMSHhex Targets the Melanocortin-1 Receptor for Melanoma Imaging. Sci. Transl. Med., 10.

Hruby, 1989, Design of Potent Linear Alpha-Melanotropin 4-10 Analogues Modified in Positions 5 and 10, J. Med. Chem., 32, 174, 10.1021/jm00121a032

Froidevaux, 2003, DOTA Alpha-Melanocyte-Stimulating Hormone Analogues for Imaging Metastatic Melanoma Lesions, Ann. N. Y. Acad. Sci., 994, 378, 10.1111/j.1749-6632.2003.tb03203.x

Cheng, 2004, Radioiodination of Rhenium Cyclized Alpha-Melanocyte-Stimulating Hormone Resulting in Enhanced Radioactivity Localization and Retention in Melanoma, Cancer Res., 64, 1411, 10.1158/0008-5472.CAN-03-0193

Froidevaux, 2005, Melanoma Targeting with DOTA-Alpha-Melanocyte-Stimulating Hormone Analogs: Structural Parameters Affecting Tumor Uptake and Kidney Uptake, J. Nucl. Med., 46, 887

Chen, 2001, Evaluation of an (111)In-DOTA-Rhenium Cyclized Alpha-MSH Analog: A Novel Cyclic-Peptide Analog with Improved Tumor-Targeting Properties, J. Nucl. Med., 42, 1847

Wilkes, 1984, Synthesis of Tritium Labeled Ac-[Nle4, D-Phe7]-Alpha-MSH4-11-NH2: A Superpotent Melanotropin with Prolonged Biological Activity, Life Sci., 34, 977, 10.1016/0024-3205(84)90302-3

Chaturvedi, 1985, Synthesis and Biological Evaluation of the Superagonist [N Alpha-Chlorotriazinylaminofluorescein-Ser1,Nle4,D-Phe7]-al Pha-MSH, J. Pharm. Sci., 74, 237, 10.1002/jps.2600740303

Sawyer, 1980, 4-Norleucine, 7-D-Phenylalanine-Alpha-Melanocyte-Stimulating Hormone: A Highly Potent Alpha-Melanotropin with Ultralong Biological Activity, Proc. Natl. Acad. Sci. USA, 77, 5754, 10.1073/pnas.77.10.5754

Langendonk, 2015, Afamelanotide for Erythropoietic Protoporphyria, N. Engl. J. Med., 373, 48, 10.1056/NEJMoa1411481

Biolcati, 2015, Long-Term Observational Study of Afamelanotide in 115 Patients with Erythropoietic Protoporphyria, Br. J. Dermatol., 172, 1601, 10.1111/bjd.13598

Harms, 2009, Mitigating Photosensitivity of Erythropoietic Protoporphyria Patients by an Agonistic Analog of Alpha-Melanocyte Stimulating Hormone, Photochem. Photobiol., 85, 1434, 10.1111/j.1751-1097.2009.00595.x

Lengweiler, 2015, Evaluation of the Immunogenicity of the Synthetic α-Melanocyte-Stimulating Hormone (α-MSH) Analogue Afamelanotide ([Nle4-D-Phe7]-α-MSH, Scenesse®) in Erythropoietic Protoporphyria Patients by ELISA Detecting Both Anti-Afamelanotide and Anti-α-MSH Antibodies, Skin Pharmacol. Physiol., 28, 103, 10.1159/000362174

Lim, 2015, Afamelanotide and Narrowband UV-B Phototherapy for the Treatment of Vitiligo: A Randomized Multicenter Trial, JAMA Dermatol., 151, 42, 10.1001/jamadermatol.2014.1875

Biolcati, 2014, Efficacy of the Melanocortin Analogue Nle4-D-Phe7-α-Melanocyte-Stimulating Hormone in the Treatment of Patients with Hailey-Hailey Disease, Clin. Exp. Dermatol., 39, 168, 10.1111/ced.12203

Ehrchen, 2014, Beneficial Effects of the Melanocortin Analogue Nle4-D-Phe7-α-MSH in Acne Vulgaris, J. Eur. Acad. Dermatol. Venereol., 28, 108, 10.1111/j.1468-3083.2012.04658.x

Haylett, 2011, Systemic Photoprotection in Solar Urticaria with α-Melanocyte-Stimulating Hormone Analogue [Nle4-D-Phe7]-α-MSH, Br. J. Dermatol., 164, 407, 10.1111/j.1365-2133.2010.10104.x

Fitzgerald, 2006, Effect of MELANOTAN, [Nle(4), D-Phe(7)]-Alpha-MSH, on Melanin Synthesis in Humans with MC1R Variant Alleles, Peptides, 27, 388, 10.1016/j.peptides.2004.12.038

Lorente, 2014, Degradation of α-Melanocyte-Stimulating Hormone Photosensitized by Pterin, Org. Biomol. Chem., 12, 3877, 10.1039/c4ob00434e

Vignoni, 2016, Degradation of Tyrosine and Tryptophan Residues of Peptides by Type I Photosensitized Oxidation, J. Photochem. Photobiol. B, 164, 226, 10.1016/j.jphotobiol.2016.09.024

Rady, 2017, Melittin, a Major Peptide Component of Bee Venom, and Its Conjugates in Cancer Therapy, Cancer Lett., 402, 16, 10.1016/j.canlet.2017.05.010

Moreno, 2015, Three Valuable Peptides from Bee and Wasp Venoms for Therapeutic and Biotechnological Use: Melittin, Apamin and Mastoparan, Toxins, 7, 1126, 10.3390/toxins7041126

Doronina, 2003, Development of Potent Monoclonal Antibody Auristatin Conjugates for Cancer Therapy, Nat. Biotechnol., 21, 778, 10.1038/nbt832

Law, 2006, A Mitochondrial Targeted Fusion Peptide Exhibits Remarkable Cytotoxicity, Mol. Cancer Ther., 5, 1944, 10.1158/1535-7163.MCT-05-0509

Karjalainen, 2011, Targeting Neuropilin-1 in Human Leukemia and Lymphoma, Blood, 117, 920, 10.1182/blood-2010-05-282921

Jung, 2016, Bladder Tumor-Targeted Delivery of pro-Apoptotic Peptide for Cancer Therapy, J. Control. Release, 235, 259, 10.1016/j.jconrel.2016.06.008

Hunt, 2017, Targeting of P32 in Peritoneal Carcinomatosis with Intraperitoneal LinTT1 Peptide-Guided pro-Apoptotic Nanoparticles, J. Control. Release, 260, 142, 10.1016/j.jconrel.2017.06.005

Qiu, 2018, Cyclic RGD-Peptide-Functionalized Polylipopeptide Micelles for Enhanced Loading and Targeted Delivery of Monomethyl Auristatin E, Mol. Pharm., 15, 4854, 10.1021/acs.molpharmaceut.8b00498

Merrifield, 1963, Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide, J. Am. Chem. Soc., 85, 2149, 10.1021/ja00897a025

Chan, W., and White, P. (2000). Fmoc Solid Phase Peptide Synthesis: A Practical Approach, OUP Oxford.

Jensen, 2013, Solid-Phase Synthesis of Phosphopeptides, Methods Mol. Biol., 1047, 191, 10.1007/978-1-62703-544-6_13

Cudic, 2008, Preparation of Glycosylated Amino Acids Suitable for Fmoc Solid-Phase Assembly, Methods Mol. Biol., 494, 187, 10.1007/978-1-59745-419-3_11

Conroy, 2010, Synthesis of N-Linked Glycopeptides via Solid-Phase Aspartylation, Org. Biomol. Chem., 8, 3723, 10.1039/c003673k

Papageorgiou, 2016, A Backbone Amide Protecting Group for Overcoming Difficult Sequences and Suppressing Aspartimide Formation, J. Pept. Sci., 22, 360, 10.1002/psc.2877

Gottumukkala, 2010, Biodistribution and Stability Studies of [18F]Fluoroethylrhodamine B, a Potential PET Myocardial Perfusion Agent, Nucl. Med. Biol., 37, 365, 10.1016/j.nucmedbio.2009.12.005

Ghosh, 2017, In Vitro Mouse and Human Serum Stability of a Heterobivalent Dual-Target Probe That Has Strong Affinity to Gastrin-Releasing Peptide and Neuropeptide Y1 Receptors on Tumor Cells, Cancer Biother. Radiopharm., 32, 24

Fredholt, 2000, Chemical and Enzymatic Stability as Well as Transport Properties of a Leu-Enkephalin Analogue and Ester Prodrugs Thereof, J. Control. Release, 63, 261, 10.1016/S0168-3659(99)00196-0

Pauly, 1996, Investigation of Glucose-Dependent Insulinotropic Polypeptide-(1-42) and Glucagon-like Peptide-1-(7-36) Degradation in Vitro by Dipeptidyl Peptidase IV Using Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry. A Novel Kinetic Approach, J. Biol. Chem., 271, 23222, 10.1074/jbc.271.38.23222

Powell, 1992, Peptide Stability in Drug Development: A Comparison of Peptide Reactivity in Different Biological Media, J. Pharm. Sci., 81, 731, 10.1002/jps.2600810802

Boulanger, 1992, Catabolism of Rat Growth Hormone-Releasing Factor(1-29) Amide in Rat Serum and Liver, Peptides, 13, 681, 10.1016/0196-9781(92)90173-Z

Gang, D., Kim, D.W., and Park, H.-S. (2018). Cyclic Peptides: Promising Scaffolds for Biopharmaceuticals. Genes, 9.

Martin, 2013, “Click”-Cyclized (68)Ga-Labeled Peptides for Molecular Imaging and Therapy: Synthesis and Preliminary in Vitro and in Vivo Evaluation in a Melanoma Model System, Recent Results Cancer Res., 194, 149, 10.1007/978-3-642-27994-2_9

Brinckerhoff, 1999, Terminal Modifications Inhibit Proteolytic Degradation of an Immunogenic MART-1(27-35) Peptide: Implications for Peptide Vaccines, Int. J. Cancer, 83, 326, 10.1002/(SICI)1097-0215(19991029)83:3<326::AID-IJC7>3.0.CO;2-X

Beck, 2001, Stability and CTL-Activity of P40/ELA Melanoma Vaccine Candidate, Biologicals, 29, 293, 10.1006/biol.2001.0306

Beck, 2001, Stability and CTL Activity of N-Terminal Glutamic Acid Containing Peptides, J. Pept. Res., 57, 528, 10.1034/j.1399-3011.2001.00895.x