Pentagalloylglucose, isolated from the leaf extract of Anacardium occidentale L., could elicit rapid and selective cytotoxicity in cancer cells
Tóm tắt
The leaf of Anacardium occidentale L. has been a component of many herbal recipes in South-Western Nigeria. The work reported herein, therefore, explored the phytochemical composition of this plant and the potential anti-cancer activity of an isolated chemical constituent. Phytochemical methods (including chromatographic analysis) combined with spectroscopic and spectrometric analyses (IR, HRMS and NMR (1D and 2D)) were used to identify chemical constituents. Cytotoxic effects were determined using the MTT viability assay and bright-field imaging. Induction of oxidative stress was determined using the fluorescence-based 2′,7′-dichlorofluorescein diacetate (DCFDA) assay. For the first time in the plant, Compound 1 was isolated from the leaf extract and identified as pentagalloylglucose. Compound 1 was significantly cytotoxic against the cancer cell lines HeLa (human cervical adenocarcinoma cell line) and MRC5-SV2 (human foetal lung cancer cell line), with IC50 of 71.45 and 52.24 μg/ml, respectively. The selectivity index (SI) for Compound 1 was 1.61 (IC50 against the normal human foetal lung fibroblast cell line MRC-5 was 84.33μg/ml), demonstrating better cancer cell-selectivity compared to doxorubicin with a SI of 1.28. The cytotoxic activity of Compound 1 in HeLa cells was also rapid, as shown by its concentration- and time-dependent 3 h and 6 h cytotoxicity profiles, an effect not observed with doxorubicin. Generation of reactive oxygen species at high concentrations of pentagalloylglucose to induce oxidative stress in cancer cells was identified as a mechanistic event that led to or resulted from its cytotoxicity. We suggest that pentagalloylglucose is selectively cytotoxic to cancer cells, and at high concentrations could exhibit pro-oxidant effects in those cells, as opposed to its general anti-oxidant effects in cells. Also, the presence of Compound 1 (pentagalloylglucose) in the plant and its cancer cell-selective cytotoxicity provide some rationale for the ethno-medicinal use of the plant’s leaf extract for treating diseases associated with excessive cell proliferation. Further studies are required to dissect the molecular mechanisms and players differentially regulating the biphasic anti-oxidant and pro-oxidant effects of pentagalloylglucose in normal and cancer cells.
Tài liệu tham khảo
Wannan BS. Analysis of Generic Relationships in Anacardiaceae. Blumea - Biodiversity, Evol Biogeography Plants. 2006;51(1):165–95.
Pell S, Mitchell J, Miller A, Lobova T. Anacardiaceae, Vol. 10. Berlin Heidelberg: Flowering Plants, Eudicots: Sapindales, Cucurbitales, Myrtaceae Springer-Verlag; 2011. p. 7–50.
Singh S, Vrishni S, Singh BK, Rahman I, Kakkar P. Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases. Free Radic Res. 2010;44(11):1267–88.
Schulze-Kaysers N, Feuereisen MM, Schieber A. Phenolic compounds in edible species of the Anacardiaceae family – a review. RSC Advances. 2015;5(89):73301–14.
Iwu M. Handbook of African Medicinal plants. Boca Raton, FL: CRC press; 1993. p. 183–4.
Oliver-Bever B. Medicinal Plants in Tropical West Africa: Cambridge University Press; 1986.
Barrett B. Medicinal Plants of Nicaragua’s Atlantic Coast. Econ Botany. 1994;48(1):8–20.
Coe FG, Anderson GJ. Ethnobotany of the garífuna of Eastern Nicaragua. Econ Botany. 1996;50(1):71–107.
Gill LS, Akinwumi C. Nigerian folk medicine: Practices and beliefs of the ondo people. J Ethnopharmacol. 1986;18(3):257–66.
Coe FG, Anderson GJ. Screening of medicinal plants used by the Garífuna of Eastern Nicaragua for bioactive compounds. J Ethnopharmacol. 1996;53(1):29–50.
Gupta MP, Arias TD, Correa M, Lamba SS. Ethnopharmacognostic Observations on Panamanian Medicinal Plants. Part I. Quarterly J Crude Drug Res. 1979;17(3-4):115–30.
Girón LM, Freire V, Alonzo A, Cáceres A. Ethnobotanical survey of the medicinal flora used by the Caribs of Guatemala. J Ethnopharmacol. 1991;34(2-3):173–87.
Mustafa AA, OO F, AA A, DA A. Ethnobotanical Survey of Medicinal Plants Used in the Treatment of Diabetes in Irepodun Local Government Area of Osun State, Nigeria. Greener J Biological Sci. 2014;4(2):059–68.
Mota ML, Thomas G, Barbosa Filho JM. Anti-inflammatory actions of tannins isolated from the bark of Anacardium occidentale L. J Ethnopharmacol. 1985;13(3):289–300.
Sokeng S, Kamtchouing P, Watcho P, Jatsa H, Moundipa P. Hypoglycemic activity of Anacardium occidentale L. aqueous extract in normal and streptozotocin-induced diabetic rats. Diabetes Res. 2001;36(1):1–9.
Ajibade PA, Fatokun AA, Andrew FP. Synthesis, characterization and anti-cancer studies of Mn(II), Cu(II), Zn(II) and Pt(II) dithiocarbamate complexes-crystal structures of the Cu(II) and Pt(II) complexes. Inorg Chimica Acta. 2020;504:119431.
Fouad MA, Abdel-Hafeez AS. Chemical and biological Studies of the methanolic extarct of Primula elatior L. seeds. Bull Pharmaceutical Sci. 2009;32:111–23.
Taiwo BJ, Fatokun AA, Olubiyi OO, Bamigboye-Taiwo OT, van Heerden FR, Wright CW. Identification of compounds with cytotoxic activity from the leaf of the Nigerian medicinal plant, Anacardium occidentale L. (Anacardiaceae). Bioorg Med Chem. 2017;25(8):2327–35.
Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial Oxidative Stress: Implications for Cell Death. Annu Rev Pharmacol Toxicol. 2007;47(1):143–83.
Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discovery. 2013;12(12):931–47.
Conklin KA. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther. 2004;3(4):294–300.
Barrera G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol. 2012;2012:137289.
Wang K-J, Yang C-R, Zhang Y-J. Phenolic antioxidants from Chinese toon (fresh young leaves and shoots of Toona sinensis). Food Chem. 2007;101(1):365–71.
Abdelwahed A, Bouhlel I, Skandrani I, Valenti K, Kadri M, Guiraud P, Steiman R, Mariotte A-M, Ghedira K, Laporte F, et al. Study of antimutagenic and antioxidant activities of Gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus: Confirmation by microarray expression profiling. Chem Biol Interact. 2007;165(1):1–13.
Kim B-H, Choi MS, Lee HG, Lee S-H, Noh KH, Kwon S, Jeong AJ, Lee H, Yi EH, Park JY. Photoprotective potential of penta-O-galloyl-β-Dglucose by targeting NF-κB and MAPK signaling in UVB radiation-induced human dermal fibroblasts and mouse skin. Mol Cells. 2015;38(11):982.
Torres-León C, Ventura-Sobrevilla J, Serna-Cock L, Ascacio-Valdés JA, Contreras-Esquivel J, Aguilar CN. Pentagalloylglucose (PGG): A valuable phenolic compound with functional properties. J Funct Foods. 2017;37:176–89.
Zhang J, Li L, Kim S-H, Hagerman AE, Lü J. Anti-Cancer, Anti-Diabetic and Other Pharmacologic and Biological Activities of Penta-Galloyl-Glucose. Pharm Res. 2009;26(9):2066–80.
Li L, Shaik AA, Zhang J, Nhkata K, Wang L, Zhang Y, Xing C, Kim S-H, Lü J. Preparation of penta-O-galloyl-β-d-glucose from tannic acid and plasma pharmacokinetic analyses by liquid–liquid extraction and reverse-phase HPLC. J Pharm Biomed Anal. 2011;54(3):545–50.
Kantapan J, Paksee S, Chawapun P, Sangthong P, Dechsupa N. Pentagalloyl Glucose- and Ethyl Gallate-Rich Extract from Maprang Seeds Induce Apoptosis in MCF-7 Breast Cancer Cells through Mitochondria-Mediated Pathway. Evid Based Complement Alternat Med. 2020;2020:1–19.
Lin M-H, Chang F-R, Hua M-Y, Wu Y-C, Liu S-T. Inhibitory Effects of 1,2,3,4,6-Penta-O-Galloyl-β-d-Glucopyranose on Biofilm Formation byStaphylococcus aureus. Antimicrob Agents Chemother. 2010;55(3):1021–7.