Penetrance of eye defects in mice heterozygous for mutation of Gli3 is enhanced by heterozygous mutation of Pax6

BMC Developmental Biology - Tập 6 - Trang 1-11 - 2006
Paulette A Zaki1, J Martin Collinson2, Junko Toraiwa1, T Ian Simpson1, David J Price1, Jane C Quinn1
1Genes and Development Group, University of Edinburgh, Edinburgh, UK
2School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK

Tóm tắt

Knowledge of the consequences of heterozygous mutations of developmentally important genes is important for understanding human genetic disorders. The Gli3 gene encodes a zinc finger transcription factor and homozygous loss-of-function mutations of Gli3 are lethal. Humans heterozygous for mutations in this gene suffer Greig cephalopolysyndactyly or Pallister-Hall syndromes, in which limb defects are prominent, and mice heterozygous for similar mutations have extra digits. Here we examined whether eye development, which is abnormal in mice lacking functional Gli3, is defective in Gli3+/- mice. We showed that Gli3 is expressed in the developing eye but that Gli3+/- mice have only very subtle eye defects. We then generated mice compound heterozygous for mutations in both Gli3 and Pax6, which encodes another developmentally important transcription factor known to be crucial for eye development. Pax6+/-; Gli3+/- eyes were compared to the eyes of wild-type, Pax6+/- or Gli3+/- siblings. They exhibited a range of abnormalities of the retina, iris, lens and cornea that was more extensive than in single Gli3+/- or Pax6+/- mutants or than would be predicted by addition of their phenotypes. These findings indicate that heterozygous mutations of Gli3 can impact on eye development. The importance of a normal Gli3 gene dosage becomes greater in the absence of a normal Pax6 gene dosage, suggesting that the two genes co-operate during eye morphogenesis.

Tài liệu tham khảo

Vortkamp A, Gessler M, Grzeschik KH: GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature. 1991, 352: 539-40. 10.1038/352539a0. Kang S, Graham JM, Olney AH, Biesecker LG: GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat Genet. 1997, 15: 266-8. 10.1038/ng0397-266. Vortkamp A, Franz T, Gessler M, Grzeschik KH: Deletion of Gli3 supports the homology of the human Greig Cephalopolysyndactyly Syndrome (GCPS) and the mouse mutant extra toes (Xt). Mammalian Genome. 1992, 3: 461-463. 10.1007/BF00356157. Johnson DR: Extra-toes: a new mutant gene causing multiple abnormalities in the mouse. J Embryol Exp Morphol. 1967, 17: 543-81. Hui CC, Slusarski D, Platt KA, Holmgren R, Joyner AL: Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Gli-2, and Gli-3, in ectoderm- and mesoderm-derived tissues suggests multiple roles during postimplantation development. Dev Biol. 1994, 162: 402-13. 10.1006/dbio.1994.1097. Zaki PA, Martynoga B, Price DJ: The role of hedgehog and Gli signalling in telencephalic development. Shh and Gli signalling and development. Edited by: Howie S, Fisher C. 2005, Landes Bioscience Tyurina OV, Guner B, Popova E, Feng J, Schier AF, Kohtz JD, Karlstrom RO: Zebrafish Gli3 acts as both an activator and repressor in Hedgehog signalling. Dev Biol. 2005, 282: 550-70. 10.1016/j.ydbio.2005.04.010. Litingtung Y, Chiang C: Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3. Nature Neuroscience. 2000, 3: 979-85. 10.1038/79916. Franz T, Besecke A: The development of the eye in homozygotes of the mouse mutant Extra-toes. Anat Embryol (Berl). 1991, 184: 355-61. 10.1007/BF00957897. Kondoh H: Development of the Eye. Mouse development: Patterning, Morphogenesis and Organogenesis. Edited by: Janet Rossant. 2002, San Diego, San Fransisco, New York, Boston, London, Sydney, Tokyo: Academic Press Furimsky M, Wallace VA: Complementary Gli activity mediates early patterning of the mouse visual system. Developmental Dynamics. 2006, 235: 594-605. 10.1002/dvdy.20658. Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA: Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature. 1996, 383: 407-13. 10.1038/383407a0. Wang YP, Dakubo G, Howley P, Campsall KD, Mazarolle CJ, Shiga SA, Lewis PM, McMahon AP, Wallace VA: Development of normal retinal organization depends on Sonic hedgehog signaling from ganglion cells. Nat Neurosci. 2002, 5: 831-2. 10.1038/nn918. Wawersik S, Maas RL: Vertebrate eye development as modeled in Drosophila. Hum Mol Genet. 2002, 9: 917-25. 10.1093/hmg/9.6.917. Ashery-Padan R, Gruss P: Pax6 lights-up the way for eye development. Curr Opin Cell Biol. 2001, 13: 706-14. 10.1016/S0955-0674(00)00274-X. Hill RE, Favor J, Hogan BLM, Ton CCT, Saunders GF, Hanson IM, Prosser J, Jordan T, Hastie ND, Vanheyningen V: Mouse small eye results from mutations in a paired-like homeobox- containing gene. Nature. 1991, 354: 522-525. 10.1038/354522a0. Prosser J, van Heyningen V: PAX6 mutations reviewed. Hum Mutat. 1998, 11: 93-108. 10.1002/(SICI)1098-1004(1998)11:2<93::AID-HUMU1>3.0.CO;2-M. Grindley JC, Davidson DR, Hill RE: The role of Pax-6 in eye and nasal development. Development. 1995, 121: 1433-42. Hogan BL, Horsburg G, Cohen J, Hetherington CM, Fisher G, Lyon MF: Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J Embryol Exp Morphol. 1986, 97: 95-110. Baulmann DC, Ohlmann A, Flugel-Koch C, Goswami S, Cvekl A, Tamm ER: Pax6 heterozygous eyes show defects in chamber angle differentiation that are associated with a wide spectrum of other anterior eye segment abnormalities. Mech Dev. 2002, 118: 3-17. 10.1016/S0925-4773(02)00260-5. Davis J, Duncan MK, Robison WG, Piatigorsky J: Requirement for Pax6 in corneal morphogenesis: a role in adhesion. J Cell Sci. 2003, 116: 2157-67. 10.1242/jcs.00441. Ramaesh T, Collinson JM, Ramaesh K, Kaufman MH, West JD, Dhillon B: Corneal abnormalities in Pax6+/- small eye mice mimic human aniridia-related keratopathy. Invest Ophthalmol Vis Sci. 2003, 44: 1871-8. 10.1167/iovs.02-0576. Macdonald R, Barth KA, Xu Q, Holder N, Mikkola I, Wilson SW: Midline signalling is required for Pax gene regulation and patterning of the eyes. Development. 1995, 121: 3267-78. Stoykova A, Treichel D, Hallonet M, Gruss P: Pax6 modulates the dorsoventral patterning of the mammalian telencephalon. J Neurosci. 2000, 20: 8042-50. Grindley JC, Hargett LK, Hill RE, Ross A, Hogan BL: Disruption of PAX6 function in mice homozygous for the Pax6Sey-1Neu mutation produces abnormalities in the early development and regionalization of the diencephalon. Mech Dev. 1997, 64: 111-26. 10.1016/S0925-4773(97)00055-5. Pratt T, Vitalis T, Warren N, Edgar JM, Mason JO, Price DJ: A role for Pax6 in the normal development of dorsal thalamus and its cortical connections. Development. 2000, 127: 5167-78. Collinson JM, Quinn JC, Hill RE, West JD: The roles of Pax6 in the cornea, retina, and olfactory epithelium of the developing mouse embryo. Dev Biol. 2003, 255: 303-12. 10.1016/S0012-1606(02)00095-7. Walther C, Gruss P: Pax-6, a murine paired box gene, is expressed in the developing CNS. Development. 1991, 113: 1435-49. Aoto K, Nishimura T, Eto K, Motoyama J: Mouse GLI3 regulates Fgf8 expression and apoptosis in the developing neural tube, face, and limb bud. Dev Biol. 2002, 251: 320-32. 10.1006/dbio.2002.0811. Jensen AM, Wallace VA: Expression of Sonic hedgehog and its putative role as a precursor cell mitogen in the developing mouse retina. Development. 1997, 124: 363-71. Black GC, Mazerolle CJ, Wang Y, Campsall KD, Petrin D, Leonard BC, Damji KF, Evans DG, McLeod D, Wallace VA: Abnormalities of the vitreoretinal interface caused by dysregulated Hedgehog signaling during retinal development. Hum Mol Genet. 2003, 12: 3269-76. 10.1093/hmg/ddg356. Ruiz i Altaba A: Gli proteins encode context-dependent positive and negative functions: implications for development and disease. Development. 1999, 126: 3205-16. Li H, Tierney C, Wen L, Wu JY, Rao Y: A single morphogenetic field gives rise to two retina primordial under the influence of the prechordal plate. Development. 1997, 124: 603-15. Reza HM, Yasuda K: The involvement of neural retina pax6 in lens fiber differentiation. Dev Neurosci. 2004, 26: 318-27. 10.1159/000082273. Quinn JC, West JD, Hill RE: Multiple functions for Pax6 in mouse eye and nasal development. Genes Dev. 1996, 10: 435-46. Maynard TM, Jain MD, Balmer CW, LaMantia AS: High-resolution mapping of the Gli3 mutation extra-toes reveals a 51.5-kb deletion. Mamm Genome. 2002, 13: 58-61. 10.1007/s00335-001-2115-X.