Pedicle screw navigation using surface digitization on the Microsoft HoloLens
Tóm tắt
Từ khóa
Tài liệu tham khảo
Raciborski F, Gasik R, Kłak A (2016) Disorders of the spine. A major health and social problem. Reumatologia 54(4):196
Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V et al (2012) Years lived with disability (ylds) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the global burden of disease study 2010. The Lancet 380(9859):2163–2196
Van Tulder MW, Koes BW, Bouter LM (1997) Conservative treatment of acute and chronic nonspecific low back pain: a systematic review of randomized controlled trials of the most common interventions. Spine 22(18):2128–2156
Mirza SK, Deyo RA (2007) Systematic review of randomized trials comparing lumbar fusion surgery to nonoperative care for treatment of chronic back pain. Spine 32(7):816–823
Verlaan J, Diekerhof C, Buskens E, Van der Tweel I, Verbout A, Dhert W, Oner F (2004) Surgical treatment of traumatic fractures of the thoracic and lumbar spine: a systematic review of the literature on techniques, complications, and outcome. Spine 29(7):803–814
Maruyama T, Takeshita K (2008) Surgical treatment of scoliosis: a review of techniques currently applied. Scoliosis 3(1):6
Mason A, Paulsen R, Babuska JM, Rajpal S, Burneikiene S, Nelson EL, Villavicencio AT (2014) The accuracy of pedicle screw placement using intraoperative image guidance systems: a systematic review. J Neurosurg Spine 20(2):196–203
Modi HN, Suh SW, Fernandez H, Yang JH, Song HR (2008) Accuracy and safety of pedicle screw placement in neuromuscular scoliosis with free-hand technique. Eur Spine J 17(12):1686–1696
Farshad M, Betz M, Farshad-Amacker NA, Moser M (2017) Accuracy of patient-specific template-guided vs. free-hand fluoroscopically controlled pedicle screw placement in the thoracic and lumbar spine: a randomized cadaveric study. Eur Spine J 26(3):738–749
Merc M, Drstvensek I, Vogrin M, Brajlih T, Recnik G (2013) A multi-level rapid prototyping drill guide template reduces the perforation risk of pedicle screw placement in the lumbar and sacral spine. Arch Orthop Trauma Surg 133(7):893–899
Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V (2011) Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J 20(6):860–868
Tian NF, Huang QS, Zhou P, Zhou Y, Wu RK, Lou Y, Xu HZ (2011) Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J 20(6):846–859
Narain AS, Hijji FY, Yom KH, Kudaravalli KT, Haws BE, Singh K (2017) Radiation exposure and reduction in the operating room: perspectives and future directions in spine surgery. World J Orthop 8(7):524
Gebhard FT, Kraus MD, Schneider E, Liener UC, Kinzl L, Arand M (2006) Does computer-assisted spine surgery reduce intraoperative radiation doses? Spine 31(17):2024–2027
Slomczykowski M, Roberto M, Schneeberger P, Ozdoba C, Vock P (1999) Radiation dose for pedicle screw insertion: fluoroscopic method versus computer-assisted surgery. Spine 24(10):975–983
Nottmeier EW, Crosby TL (2007) Timing of paired points and surface matching registration in three-dimensional (3D) image-guided spinal surgery. Clin Spine Surg 20(4):268–270
Richter M, Cakir B, Schmidt R (2005) Cervical pedicle screws: conventional versus computer-assisted placement of cannulated screws. Spine 30(20):2280–2287
Chiang CF, Tsai TT, Chen LH, Lai PL, Fu TS, Niu CC, Chen WJ (2012) Computed tomography-based navigation-assisted pedicle screw insertion for thoracic and lumbar spine fractures. Chang Gung Med J 35(4):332–338
Qian L, Unberath M, Yu K, Fuerst B, Johnson A, Navab N, Osgood G (2017) Towards virtual monitors for image guided interventions-real-time streaming to optical see-through head-mounted displays. arXiv preprint arXiv:171000808
Andress S, Johnson A, Unberath M, Winkler AF, Yu K, Fotouhi J, Weidert S, Osgood G, Navab N (2018) On-the-fly augmented reality for orthopedic surgery using a multimodal fiducial. J Med Imaging 5(2):021209
Sielhorst T, Feuerstein M, Navab N (2008) Advanced medical displays: a literature review of augmented reality. J Disp Technol 4(4):451–467
Navab N, Blum T, Wang L, Okur A, Wendler T (2012) First deployments of augmented reality in operating rooms. Computer 45(7):48–55
Ma L, Zhao Z, Chen F, Zhang B, Fu L, Liao H (2017) Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study. Int J Comput Assis Radiol Surg 12(12):2205–2215
Microsoft (2018) HoloLens Research mode. https://docs.microHrBsoft.com/en-us/windows/mixed-reality/research-modeHrB . Accessed 1 Nov 2018
Olson E (2011) Apriltag: a robust and flexible visual fiducial system. In: 2011 IEEE international conference on robotics and automation (ICRA). IEEE, pp 3400–3407
Microsoft (2018) Locatable camera. https://docs.microsoft.com/en-us/windows/mixed-reality/locatable-camera . Accessed 5 Nov 2018
Garrido-Jurado S, Muñoz-Salinas R, Madrid-Cuevas FJ, Marín-Jiménez MJ (2014) Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit 47(6):2280–2292
Garrido-Jurado S, Munoz-Salinas R, Madrid-Cuevas FJ, Medina-Carnicer R (2016) Generation of fiducial marker dictionaries using mixed integer linear programming. Pattern Recognit 51:481–491
Romero-Ramirez FJ, Muñoz-Salinas R, Medina-Carnicer R (2018) Speeded up detection of squared fiducial markers. Image Vis Comput 76:38–47
Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82(1):35–45
Bradski G, Kaehler A (2000) Opencv. Dr Dobbs journal of software tools 3
Horn BK (1987) Closed-form solution of absolute orientation using unit quaternions. JOSA A 4(4):629–642
Microsoft (2017) Use the HoloLens clicker. https://support.micHrBrosoft.com/de-ch/help/12646/hololens-use-the-hololens-clickerHrB . Accessed 3 Nov 2018
Microsoft (2018) HoloToolkit 2017.4.1.0. https://github.com/MicHrBrosoft/MixedRealityToolkit-Unity/releases/tag/2017.4.1.0HrB . Accessed 3 Nov 2018
Besl PJ, McKay ND (1992) Method for registration of 3-D shapes. In: Sensor fusion IV: control paradigms and data structures, vol 1611. International society for optics and photonics, pp 586–607
Pearson K (1901) LIII. On lines and planes of closest fit to systems of points in space. Lond Edinb Dublin Philos Mag J Sci 2(11):559–572
Schweizer A, Mauler F, Vlachopoulos L, Nagy L, Fürnstahl P (2016) Computer-assisted 3-dimensional reconstructions of scaphoid fractures and nonunions with and without the use of patient-specific guides: early clinical outcomes and postoperative assessments of reconstruction accuracy. J Hand Surg 41(1):59–69
Roner S, Vlachopoulos L, Nagy L, Schweizer A, Fürnstahl P (2017) Accuracy and early clinical outcome of 3-dimensional planned and guided single-cut osteotomies of malunited forearm bones. J Hand Surg 42(12):1031–e1
Walti J, Jost GF, Cattin PC (2014) A new cost-effective approach to pedicular screw placement. In: Workshop on augmented environments for computer-assisted interventions. Springer, pp 90–97
Gibby JT, Swenson SA, Cvetko S, Rao R, Javan R (2019) Head-mounted display augmented reality to guide pedicle screw placement utilizing computed tomography. Int J Comput Assis Radiol Surg 14(3):525–535
Vassallo R, Rankin A, Chen EC, Peters TM (2017) Hologram stability evaluation for microsoft hololens. In: Medical imaging 2017: image perception, observer performance, and technology assessment, vol 10136. international society for optics and photonics, p 1013614