Pcsk9 is associated with severity of coronary artery lesions in male patients with premature myocardial infarction
Tóm tắt
Proprotein convertase subtilisin/kexin type 9 (Pcsk9) correlated with incidence and prognosis of coronary heart disease. However, it is unclear whether Pcsk9 contributed to coronary artery lesion severity in patients with premature myocardial infarction (PMI). The present study investigated associations between Pcsk9 and coronary artery lesion severity in PMI patients who underwent coronary angiography (CAG). This prospective cohort study included young men (age ≤ 45 years, n = 332) with acute MI who underwent CAG between January 2017 and July 2019. Serum Pcsk9 levels and clinical characteristics were evaluated. SYNTAX scores (SYNergy between percutaneous coronary intervention with [paclitaxel-eluting] TAXUS stent and cardiac surgery) were calculated to quantify coronary artery lesions. Serum Pcsk9 levels were positively associated with SYNTAX scores (r = 0.173, P < 0.05). The diagnostic cutoff value of PSCK9 level was 122.9 ng/mL, yielding an area under the curve (AUC) of 0.63, sensitivity 81%, and specificity 40%. Serum Pcsk9, LDL-C, Apob, NT-proBnp, CK level, and diabetes history were independent predictors of high SYNTAX scores (P < 0.05). After stratifying by serum LDL-C level (cutoff = 2.6 mmol/L), medium-high Pcsk9 levels had increased risk of high SYNTAX scores in patients with high LDL-C (P < 0.05), and higher serum Pcsk9 levels had increased risk of major adverse cardiac events (MACE) after adjusting for confounding factors (P < 0.05). Serum Pcsk9 levels correlates with severity of coronary artery lesion in PMI patients and may serve as a biomarker for severity of coronary artery stenosis in this patient population, which may contribute to risk stratification.
Tài liệu tham khảo
Zhang Q, Zhao D, Xie W, Xie X, Guo M, Wang M, et al. Recent trends in hospitalization for acute myocardial infarction in Beijing: increasing overall burden and a transition from ST-segment elevation to non-ST-segment elevation myocardial infarction in a population-based study. Medicine (Baltimore). 2016;95(5):e2677. https://doi.org/10.1097/MD.0000000000002677.
Zhou Y, Yao X, Liu G, Jian W, Yip W. Level and variation on quality of care in China: a cross-sectional study for the acute myocardial infarction patients in tertiary hospitals in Beijing. BMC Health Serv Res. 2019;19(1):43. https://doi.org/10.1186/s12913-019-3872-0.
Titov BV, Osmak GJ, Matveeva NA, Kukava NG, Shakhnovich RM, Favorov AV, et al. Genetic risk factors for myocardial infarction more clearly manifest for early age of first onset. Mol Biol Rep. 2017;44(4):315–21. https://doi.org/10.1007/s11033-017-4112-5.
Dugani SB, Ayala Melendez AP, Reka R, Hydoub YM, McCafferty SN, Murad MH, et al. Risk factors associated with premature myocardial infarction: a systematic review protocol. BMJ Open. 2019;9(2):e023647. https://doi.org/10.1136/bmjopen-2018-023647.
Arora S, Stouffer GA, Kucharska-Newton AM, Qamar A, Vaduganathan M, Pandey A, et al. Twenty year trends and sex differences in young adults hospitalized with acute myocardial infarction. Circulation. 2019;139(8):1047–56. https://doi.org/10.1161/CIRCULATIONAHA.118.037137.
Fischer M, Broeckel U, Holmer S, Baessler A, Hengstenberg C, Mayer B, et al. Distinct heritable patterns of angiographic coronary artery disease in families with myocardial infarction. Circulation. 2005;111(7):855–62. https://doi.org/10.1161/01.CIR.0000155611.41961.BB.
Braenne I, Kleinecke M, Reiz B, Graf E, Strom T, Wieland T, et al. Systematic analysis of variants related to familial hypercholesterolemia in families with premature myocardial infarction. Eur J Hum Genet. 2016;24(2):191–7. https://doi.org/10.1038/ejhg.2015.100.
Guella I, Asselta R, Ardissino D, Merlini PA, Peyvandi F, Kathiresan S, et al. Effects of PCSK9 genetic variants on plasma LDL cholesterol levels and risk of premature myocardial infarction in the Italian population. J Lipid Res. 2010;51(11):3342–9. https://doi.org/10.1194/jlr.M010009.
Lee C, Cui Y, Song J, Li S, Zhang F, Wu M, et al. Effects of familial hypercholesterolemia-associated genes on the phenotype of premature myocardial infarction. Lipids Health Dis. 2019;18(1):95. https://doi.org/10.1186/s12944-019-1042-3.
Lambert G, Charlton F, Rye KA, Piper DE. Molecular basis of PCSK9 function. Atherosclerosis. 2009;203(1):1–7. https://doi.org/10.1016/j.atherosclerosis.2008.06.010.
Liu X, Suo R, Chan CZY, Liu T, Tse G, Li G. The immune functions of PCSK9: local and systemic perspectives. J Cell Physiol. 2019;234(11):19180–8. https://doi.org/10.1002/jcp.28612.
Denis M, Marcinkiewicz J, Zaid A, Gauthier D, Poirier S, Lazure C, et al. Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation. 2012;125(7):894–901. https://doi.org/10.1161/CIRCULATIONAHA.111.057406.
Leander K, Malarstig A, Van't Hooft FM, Hyde C, Hellenius ML, Troutt JS, et al. Circulating Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) predicts future risk of cardiovascular events independently of established risk factors. Circulation. 2016;133(13):1230–9. https://doi.org/10.1161/CIRCULATIONAHA.115.018531.
Li S, Li JJ. PCSK9: a key factor modulating atherosclerosis. J Atheroscler Thromb. 2015;22(3):221–30. https://doi.org/10.5551/jat.27615.
Khan SU, Talluri S, Riaz H, Rahman H, Nasir F, Bin Riaz I, et al. A Bayesian network meta-analysis of PCSK9 inhibitors, statins and ezetimibe with or without statins for cardiovascular outcomes. Eur J Prev Cardiol. 2018;25(8):844–53. https://doi.org/10.1177/2047487318766612.
Ridker PM, Rose LM, Kastelein JJP, Santos RD, Wei C, Revkin J, et al. Cardiovascular event reduction with PCSK9 inhibition among 1578 patients with familial hypercholesterolemia: results from the SPIRE randomized trials of bococizumab. J Clin Lipidol. 2018;12(4):958–65. https://doi.org/10.1016/j.jacl.2018.03.088.
Capodanno D, Di Salvo ME, Cincotta G, Miano M, Tamburino C, Tamburino C. Usefulness of the SYNTAX score for predicting clinical outcome after percutaneous coronary intervention of unprotected left main coronary artery disease. Circ Cardiovasc Interv. 2009;2(4):302–8. https://doi.org/10.1161/CIRCINTERVENTIONS.108.847137.
Huang G, Zhao JL, Du H, Lan XB, Yin YH. Coronary score adds prognostic information for patients with acute coronary syndrome. Circ J. 2010;74(3):490–5. https://doi.org/10.1253/circj.CJ-09-0637.
Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87–165. https://doi.org/10.1093/eurheartj/ehy394.
Bae KH, Kim SW, Choi YK, Seo JB, Kim N, Kim CY, et al. Serum levels of PCSK9 are associated with coronary angiographic severity in patients with acute coronary syndrome. Diabetes Metab J. 2018;42(3):207–14. https://doi.org/10.4093/dmj.2017.0081.
Dalgic Y, Abaci O, Kocas C, Cetinkal G, Dalgic SN, Buyuk A, et al. The relationship between protein convertase subtilisin kexin type-9 levels and extent of coronary artery disease in patients with non-ST-elevation myocardial infarction. Coron Artery Dis. 2020;31(1):81–6. https://doi.org/10.1097/MCA.0000000000000774.
Li JJ, Li S, Zhang Y, Xu RX, Guo YL, Zhu CG, et al. Proprotein Convertase Subtilisin/Kexin type 9, C-reactive protein, coronary severity, and outcomes in patients with stable coronary artery disease: a prospective observational cohort study. Medicine (Baltimore). 2015;94(52):e2426. https://doi.org/10.1097/MD.0000000000002426.
Panahi Y, Ghahrodi MS, Jamshir M, Safarpour MA, Bianconi V, Pirro M, et al. PCSK9 and atherosclerosis burden in the coronary arteries of patients undergoing coronary angiography. Clin Biochem. 2019;74:12–8. https://doi.org/10.1016/j.clinbiochem.2019.09.001.
Wang S, Cheng ZY, Zhao ZN, Quan XQ, Wei Y, Xia DS, et al. Correlation of serum PCSK9 in CHD patients with the severity of coronary arterial lesions. Eur Rev Med Pharmacol Sci. 2016;20(6):1135–9.
Li S, Guo YL, Xu RX, Zhang Y, Zhu CG, Sun J, et al. Plasma PCSK9 levels are associated with the severity of coronary stenosis in patients with atherosclerosis. Int J Cardiol. 2014;174(3):863–4. https://doi.org/10.1016/j.ijcard.2014.04.224.
Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). Eur Heart J. 2019;40(3):237–69. https://doi.org/10.1093/eurheartj/ehy462.
Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–104. https://doi.org/10.1093/eurheartj/ehy339.
American DA. 2. Classification and diagnosis of diabetes: standards of medical Care in Diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S13–28. https://doi.org/10.2337/dc19-S002.
Cesaroni G, Forastiere F, Agabiti N, Valente P, Zuccaro P, Perucci CA. Effect of the Italian smoking ban on population rates of acute coronary events. Circulation. 2008;117(9):1183–8. https://doi.org/10.1161/CIRCULATIONAHA.107.729889.
Organization WH. The top 10 causes of death: World Health Organization; 2018 [updated May 24, 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
Gao XJ, Yang JG, Yang YJ, Li W, Xu HY, Wu Y, et al. Age-related coronary risk factors in Chinese patients with acute myocardial infarction. Zhonghua Yi Xue Za Zhi. 2016;96(40):3251–6. https://doi.org/10.3760/cma.j.issn.0376-2491.2016.40.012.
Tandjung K, Lam MK, Sen H, de Man FH, Louwerenburg JH, Stoel MG, et al. Value of the SYNTAX score for periprocedural myocardial infarction according to WHO and the third universal definition of myocardial infarction: insights from the TWENTE trial. EuroIntervention. 2016;12(4):431–40. https://doi.org/10.4244/EIJY15M08_01.
Gencer B, Montecucco F, Nanchen D, Carbone F, Klingenberg R, Vuilleumier N, et al. Prognostic value of PCSK9 levels in patients with acute coronary syndromes. Eur Heart J. 2016;37(6):546–53. https://doi.org/10.1093/eurheartj/ehv637.
Farooq V, Head SJ, Kappetein AP, Serruys PW. Widening clinical applications of the SYNTAX score. Heart. 2014;100(4):276–87. https://doi.org/10.1136/heartjnl-2013-304273.
Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360(10):961–72. https://doi.org/10.1056/NEJMoa0804626.
Lin T, Wang L, Guo J, Liu P, Chen L, Wei M, et al. Association between serum LDL-C and ApoB and SYNTAX score in patients with stable coronary artery disease. Angiology. 2018;69(8):724–9. https://doi.org/10.1177/0003319717748771.
Li C, Zhang Z, Peng Y, Gao H, Wang Y, Zhao J, et al. Plasma neutrophil gelatinase-associated lipocalin levels are associated with the presence and severity of coronary heart disease. PLoS One. 2019;14(8):e0220841. https://doi.org/10.1371/journal.pone.0220841.
Incalcaterra E, Caruso M, Lo Presti R, Caimi G. Myocardial infarction in young adults: risk factors, clinical characteristics and prognosis according to our experience. Clin Ter. 2013;164(2):e77–82. https://doi.org/10.7417/CT.2013.1535.
Wiesbauer F, Blessberger H, Azar D, Goliasch G, Wagner O, Gerhold L, et al. Familial-combined hyperlipidaemia in very young myocardial infarction survivors (< or =40 years of age). Eur Heart J. 2009;30(9):1073–9. https://doi.org/10.1093/eurheartj/ehp051.
Chan CM, Chen WL, Kuo HY, Huang CC, Shen YS, Choy CS, et al. Circadian variation of acute myocardial infarction in young people. Am J Emerg Med. 2012;30(8):1461–5. https://doi.org/10.1016/j.ajem.2011.11.019.
Goliasch G, Oravec S, Blessberger H, Dostal E, Hoke M, Wojta J, et al. Relative importance of different lipid risk factors for the development of myocardial infarction at a very young age (</= 40 years of age). Eur J Clin Investig. 2012;42(6):631–6. https://doi.org/10.1111/j.1365-2362.2011.02629.x.
Gragnano F, Fimiani F, Di Maio M, Cesaro A, Limongelli G, Cattano D, et al. Impact of lipoprotein(a) levels on recurrent cardiovascular events in patients with premature coronary artery disease. Intern Emerg Med. 2019;14(4):621–5. https://doi.org/10.1007/s11739-019-02082-8.
Stein EA, Raal FJ. New therapies for reducing low-density lipoprotein cholesterol. Endocrinol Metab Clin N Am. 2014;43(4):1007–33. https://doi.org/10.1016/j.ecl.2014.08.008.
Urban D, Poss J, Bohm M, Laufs U. Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J Am Coll Cardiol. 2013;62(16):1401–8. https://doi.org/10.1016/j.jacc.2013.07.056.
Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72. https://doi.org/10.1056/NEJMoa054013.
Capodanno D, Caggegi A, Miano M, Cincotta G, Dipasqua F, Giacchi G, et al. Global risk classification and clinical SYNTAX (synergy between percutaneous coronary intervention with TAXUS and cardiac surgery) score in patients undergoing percutaneous or surgical left main revascularization. JACC Cardiovasc Interv. 2011;4(3):287–97. https://doi.org/10.1016/j.jcin.2010.10.013.
Koren MJ, Lundqvist P, Bolognese M, Neutel JM, Monsalvo ML, Yang J, et al. Anti-PCSK9 monotherapy for hypercholesterolemia: the MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol. 2014;63(23):2531–40. https://doi.org/10.1016/j.jacc.2014.03.018.
Nicholls SJ, Puri R, Anderson T, Ballantyne CM, Cho L, Kastelein JJ, et al. Effect of Evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA. 2016;316(22):2373–84. https://doi.org/10.1001/jama.2016.16951.
Yano H, Horinaka S, Ishimitsu T. Effect of evolocumab therapy on coronary fibrous cap thickness assessed by optical coherence tomography in patients with acute coronary syndrome. J Cardiol. 2020;75(3):289–95. https://doi.org/10.1016/j.jjcc.2019.08.002.