Chú trọng đến sự chú ý trong trầm cảm

Translational Psychiatry - Tập 9 Số 1
Arielle S. Keller1, John E. Leikauf2, Bailey Holt-Gosselin2, Brooke R. Staveland2, Leanne M. Williams2
1Graduate Program in Neurosciences, Stanford University, Stanford, CA, USA
2Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA

Tóm tắt

Tóm tắt

Sự chú ý là cổng thông tin mà qua đó các thông tin cảm giác đi vào trải nghiệm ý thức của chúng ta. Thường thì, bệnh nhân bị rối loạn trầm cảm nặng (MDD) phàn nàn về những khó khăn trong việc tập trung, điều này ảnh hưởng tiêu cực đến chức năng hàng ngày của họ, và những vấn đề về sự chú ý này không được cải thiện bởi các phương pháp điều trị hàng đầu hiện tại. Mặc dù sự chú ý tác động đến nhiều khía cạnh của chức năng nhận thức và cảm xúc, và việc khó khăn trong việc tập trung được đưa vào tiêu chuẩn chẩn đoán cho MDD, trọng tâm của trầm cảm như một căn bệnh thường tập trung vào các đặc điểm về tâm trạng, với các đặc điểm chú ý được xem là ít quan trọng hơn cho việc nghiên cứu. Tại đây, chúng tôi tóm tắt độ rộng và chiều sâu của các phát hiện từ khoa học thần kinh nhận thức liên quan đến các cơ chế thần kinh hỗ trợ sự chú ý có mục tiêu nhằm hiểu rõ hơn cách mà chúng có thể bị sai lệch trong trầm cảm. Trước tiên, chúng tôi khắc họa những suy giảm hành vi trong sự chú ý chọn lọc, kéo dài và chia sẻ ở những cá nhân trầm cảm. Sau đó, chúng tôi thảo luận về mối tương tác giữa sự chú ý có mục tiêu và các khía cạnh khác của nhận thức (kiểm soát nhận thức, cảm nhận và ra quyết định) và chức năng cảm xúc (thiên lệch tiêu cực, chú ý hướng nội và mối tương tác giữa tâm trạng và sự chú ý). Chúng tôi cũng xem xét bằng chứng cho các cơ chế sinh học thần kinh hỗ trợ sự chú ý, bao gồm cấu trúc của các mạng lưới thần kinh quy mô lớn và tính đồng bộ điện sinh lý. Cuối cùng, chúng tôi thảo luận về sự thất bại của các phương pháp điều trị hàng đầu hiện tại trong việc cải thiện các suy giảm sự chú ý ở MDD và xem xét bằng chứng cho các can thiệp dược lý, kích thích não và hành vi có mục tiêu hơn. Qua việc tổng hợp các phát hiện từ nhiều lĩnh vực và phác thảo các hướng nghiên cứu trong tương lai, chúng tôi nhằm đưa ra một phác thảo rõ ràng hơn về cách mà các suy giảm sự chú ý có thể phát sinh trong bối cảnh của MDD và cách mà chúng, về mặt cơ chế, có thể tác động tiêu cực đến chức năng thường ngày trong nhiều lĩnh vực khác nhau.

Từ khóa


Tài liệu tham khảo

American Psychiatric Association. DSM-5 Task Force. Diagnostic and Statistical Manual of Mental Disorders: DSM-5™. 5th edn. (American Psychiatric Publishing, Inc., Arlington, VA, 2013).

Zuckerman, H. et al. Recognition and treatment of cognitive dysfunction in major depressive disorder. Front. Psychiatry 9, 655 (2018).

Fehnel, S. E. et al. Patient-centered assessment of cognitive symptoms of depression. CNS Spectr. 21, 43–52 (2016).

Cotrena, C., Branco, L. D., Shansis, F. M. & Fonseca, R. P. Executive function impairments in depression and bipolar disorder: association with functional impairment and quality of life. J. Affect. Disord. 190, 744–753 (2016).

Majer, M. et al. Impaired divided attention predicts delayed response and risk to relapse in subjects with depressive disorders. Psychological Med. 34, 1453–1463 (2004).

Insel, T. R. The NIMH research domain criteria (RDoC) project: precision medicine for psychiatry. Am. J. Psychiatry 171, 395–397 (2014).

National Institute of Mental Health. Research Domain Criteria (RDoC): RDoC Constructs: Domain: Cognitive Systems. [Internet]. Retrieved Aug 2019. Available from: https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/constructs/cognitive-systems.shtml.

Rock, P. L., Roiser, J. P., Riedel, W. J. & Blackwell, A. D. Cognitive impairment in depression: a systematic review and meta-analysis. Psychol. Med. 44, 2029–2040 (2014).

Katsuki, F. & Constantinidis, C. Bottom-up and top-down attention: different processes and overlapping neural systems. Neuroscientist 20, 509–521 (2014).

Fried, E. I. & Nesse, R. M. Depression is not a consistent syndrome: an investigation of unique symptom patterns in the STAR*D study. J. Affect. Disord. 172, 96–102 (2015).

James, W. The Principles of Psychology. (H. Holt and company, New York, NY, 1890).

Ibos, G. & Freedman, D. J. Interaction between spatial and feature attention in posterior parietal cortex. Neuron 91, 931–943 (2016).

Patzwahl, D. R. & Treue, S. Combining spatial and feature-based attention within the receptive field of MT neurons. Vis. Res. 49, 1188–1193 (2009).

Giesbrecht, B., Woldorff, M. G., Song, A. W. & Mangun, G. R. Neural mechanisms of top-down control during spatial and feature attention. Neuroimage 19, 496–512 (2003).

Galashan, D. & Siemann, J. Differences and similarities for spatial and feature-based selective attentional orienting. Front. Neurosci. 11, 283 (2017).

Kertzman, S. et al. Stroop performance in major depression: selective attention impairment or psychomotor slowness? J. Affect. Disord. 122, 167–173 (2010).

Holmes, A. J. & Pizzagalli, D. A. Response conflict and frontocingulate dysfunction in unmedicated participants with major depression. Neuropsychologia 46, 2904–2913 (2008).

Cataldo, M. G., Nobile, M., Lorusso, M. L., Battaglia, M. & Molteni, M. Impulsivity in depressed children and adolescents: a comparison between behavioral and neuropsychological data. Psychiatry Res. 136, 123–133 (2005).

Degl’Innocenti, A., Ågren, H. & Bäckman, L. Executive deficits in major depression. Acta Psychiatr. Scand. 97, 182–188 (1998).

Keller, A. S., Ball, T. M. & Williams, L. M. Deep phenotyping of attention impairments and the “Inattention Biotype” in major depressive disorder. Psychol. Med. 1–10 (2019). https://doi.org/10.1017/S0033291719002290.

Ladouceur, C. D. et al. Altered error-relaed brain activity in youth with major depression. Developmental Cogn. Neurosci. 2, 351–362 (2012).

Olvet, D. M., Klein, D. N. & Hajcak, G. Depression symptom severity and error-related brain activity. Psychiatry Res. 179, 30–37 (2010).

Kemp, A. H. et al. Fronto-temporal alterations within the first 200 ms during an attentional task distinguish major depression, non-clinical participants with depressed mood, and healthy controls: a potential biomarker? Hum. Brain Mapp. 30, 602–614 (2009).

Tenke, C. E. et al. Hemispatial PCA dissociates temporal from parietal ERP generator patterns: CSD components in healthy adults and depressed patients during a dichotic oddball task. Int. J. Psychophysiol. 67, 1–16 (2008).

Gyurak, A. et al. Frontoparietal activation during response inhibition predicts remission to antidepressants in patients with major depression. Biol. Psychiatry 79, 274–281 (2016).

Li, X., Wu, H., Lou, C., Xing, B. & Yu, E. Study on the executive function of attention in depression patients based on SPECT technology. Int J. Clin. Exp. Med. 7, 1110–1115 (2014).

Li, Y. et al. Depression-related brain connectivity analyzed by EEG event-related phase synchrony measure. Front. Human Neurosci. 10, 1–15 (2016).

van Vugt, M. K. & van der Velde, M., ESM-MERGE Investigators. How does rumination impact cognition? A first mechanistic model. Top. Cogn. Sci. 10, 175–191 (2018).

Cherry, E. C. Some experiments on the recognition of speech, with one and with two ears. J. Acoust. Soc. Am. 25, 975–979 (1953).

McMains, S. A. & Somers, D. C. Processing efficiency of divided spatial attention mechanisms in human visual cortex. J. Neurosci. 25, 9444–9448 (2005).

Godefroy, O. & Rousseaux, M. Divided and focused attention in patients with lesion of the prefrontal cortex. Brain Cogn. 30, 155–174 (1996).

Richer, F. et al. Target detection deficits in frontal lobectomy. Brain Cogn. 21, 203–211 (1993).

Owen, A. M., Roberts, A. C., Polkey, C. E., Sahakian, B. J. & Robbins, T. W. Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions, or amygdalo-hippocampectomy in man. Neuropsychologia 29, 993–1006 (1991).

Lautenbacher, S., Spernal, J. & Krieg, J.-C. Divided and selective attention in panic disorder: a comparative study of patients with panic disorder, major depression and healthy controls. Eur. Arch. Psychiatry Clin. Neurosci. 252, 210–213 (2002).

Thomas, P., Goudemand, M. & Rousseaux, M. Divided attention in major depression. Psychiatry Res. 81, 309–322 (1998).

Mikoteit, T. et al. Improved alertness is associated with early increase in serum brain-derived neurotrophic factor and antidepressant treatment outcome in major depression. Neuropsychobiology 72, 16–28 (2015).

Kim, S. J. et al. The relationship between poor performance on attention tasks and increased suicidal ideation in adolescents. Eur. Child Adolesc. Psychiatry 24, 1361–1368 (2015).

LeMoult, J. & Gotlib, I. H. Depression: a cognitive perspective. Clin. Psychol. Rev. 69, 51–66 (2019).

Snyder, H. R. Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review. Psychological Bull. 139, 81–132 (2013).

National Institute of Mental Health. Research Domain Criteria (RDoC): Cognitive Systems: Workshop Proceedings. [Internet]. Retrieved Aug 2019. Available from: https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/cognitive-systems-workshop-proceedings.shtml (2019).

Chun, M. M., Golomb, J. D. & Turk-Browne, N. B. A taxonomy of external and internal attention. Annu Rev. Psychol. 62, 73–101 (2011).

Gratton, G., Cooper, P., Fabiani, M., Carter, C. S. & Karayanidis, F. Dynamics of cognitive control: theoretical bases, paradigms, and a view for the future. Psychophysiology 55, 1–29 (2018).

Carrasco, M. & Barbot, A. Spatial attention alters visual appearance. Curr. Opin. Psychol. 29, 56–64 (2019).

Liu, T., Abrams, J. & Carrasco, M. Voluntary attention enhances contrast appearance. Psychol. Sci. 20, 354–362 (2009).

Fuller, S. & Carrasco, M. Exogenous attention and color perception: performance and appearance of saturation and hue. Vis. Res. 46, 4032–4047 (2006).

Störmer, V. S. & Alvarez, G. A. Attention alters perceived attractiveness. Psychological Sci. 27, 563–571 (2016).

Mishra, M. V. & Srinivasan, N. Exogenous attention intensifies perceived emotion expressions. Neurosci. Conscious 1, nix022 (2017).

Bubl, E., Kern, E., Ebert, D., Bach, M. & van Elst, L. T. Seeing gray when feeling blue? Depression can be measured in the eye of the diseased. Biol. Psychiatry 68, 205–208 (2010).

Barbot, A. & Carrasco, M. Emotion and anxiety potentiate the way attention alters visual appearance. Sci. Rep. 8, 5938 (2018).

Krajbich, I. Accounting for attention in sequential sampling models of decision making. Curr. Opin. Psychol. 29, 6–11 (2019).

Shimojo, S., Simon, C., Shimojo, E. & Scheier, C. Gaze bias both reflects and influences preference. Nat. Neurosci. 6, 1317–1322 (2003).

Chelazzi, L. et al. Altering spatial priority maps via reward-based learning. J. Neurosci. 34, 8594–8604 (2014).

Niv, Y. et al. Reinforcement learning in multidimensional environments relies on attention mechanisms. J. Neurosci. 35, 8145–8157 (2015).

Leong, Y.-C., Radulescu, A., Daniel, R., DeWoskin, V. & Niv, Y. Dynamic interaction between reinforcement learning and attention in multidimensional environments. Neuron 93, 451–463 (2017).

Huys, Q. J. M., Daw, N. D. & Dayan, P. Depression: a decision-theoretic analysis. Annu. Rev. Neurosci. 38, 1–23 (2015).

Macleod, C., Mathews, A. & Tata, P. Attentional bias in emotional disorders. J. Abnorm. Psychol. 95, 15–20 (1986).

Williams, J. M., Mathews, A. & MacLeod, C. The emotional stroop task and psychopathology. Psychol. Bull. 120, 3–24 (1996).

Gotlib, I. H. & Joormann, J. Cognition and depression: current status and future directions. Annu Rev. Clin. Psychol. 6, 285–312 (2010).

Kircanski, K. & Gotlib, I. H. Processing of emotional information in major depressive disorder: toward a dimensional understanding. Emot. Rev. 7, 256–264 (2015).

Lang, P. J. & Davis, M. (2006). Emotion, motivation, and the brain: reflex foundations in animal and human research. Prog. Brain Res. 156, 3–29 (2006).

Clasen, P. C., Wells, T. T., Ellis, A. J. & Beevers, C. G. Attentional biases and the persistence of sad mood in major depressive disorder. J. Abnorm Psychol. 122, 74–85 (2013).

Vanlessen, N., De Raedt, R., Koster, E. H. W. & Pourtois, G. Happy heart, smiling eyes: a systematic review of positive mood effects on broadening of visuospatial attention. Neurosci. Biobehav. Rev. 68, 816–837 (2016).

Meeten, F. & Davey, G. C. L. Mood-as-input hypothesis and perseverative psychopathologies. Clin. Psychol. Rev. 31, 1259–1275 (2011).

Fredrickson, B. The role of positive emotions in positive psychology: the broaden-and-build theory of positive emotions. Am. Psychol. 56, 218–226 (2001).

Isen, A. M., Daubman, K. A. & Nowicki, G. P. Positive affect facilitates creative problem-solving. J. Pers. Soc. Psychol. 52, 1122–1131 (1987).

Isen, A. M. & Daubman, K. A. The influence of affect on categorization. J. Personal. Soc. Psychol. 47, 1206–1217 (1984).

Derryberry, D, Tucker, D. M, Neidenthal, P. M. & Kitayama, S. Motivating the focus of attention. In The Heart’s Eye: Emotional Influences in Perception and Attention. (eds Niedenthal, P. M. & Kitayama, S.) 167–196 (Academic: San Diego, CA, 1994).

Easterbrook, J. The effect of emotion on cue utilization and the organization of behavior. Psychological Rev. 66, 183–201 (1959).

Loftus, E. Eyewitness Testimony (Harvard University Press, London, UK, 1979).

Brand, N., Verspui, L. & Oving, A. Induced mood and selective attention. Percept. Mot. Skills 84, 455–463 (1997).

Storbeck, J. & Clore, G. L. Affective arousal as information: how affective arousal influences judgments, learning, and memory. Soc. Personal. Psychol. Compass 2, 1824–1843 (2008).

Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R. & Ungerleider, L. G. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751–761 (1999).

Corbetta, M. Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? PNAS 95, 831–838 (1998).

Nobre, A. C. et al. Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120, 515–533 (1997).

Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

Falkenberg, L. E., Specht, K. & Westerhausen, R. Attention and cognitive control networks assessed in a dichotic listening fmri study. Brain Cogn. 76, 276–285 (2011).

Bassett, D. S. et al. Dynamic reconfiguration of human brain networks during learning. PNAS 108, 7641–7646 (2011).

Gu, S. et al. Controllability of structural brain networks. Nat. Commun. 6, 8414 (2015).

Gu, S. et al. Optimal trajectories of brain state transitions. NeuroImage 148, 305–317 (2017).

Qin, J. et al. Abnormal brain anatomical topological organization of the cognitive-emotional and the frontoparietal circuitry in major depressive disorder. Magn. Reson. Med. 72, 1397–1407 (2014).

Luo, Q. et al. Frequency dependent topological alterations of intrinsic functional connectome in major depressive disorder. Sci. Rep. 5, 9710 (2015).

He, Y. et al. Reconfiguration of cortical networks in MDD uncovered by multiscale community detection with fMRI. Cereb. Cortex 28, 1383–1395 (2018).

Gratton, C., Sun, H. & Petersen, S. E. Control networks and hubs. Psychophysiology 55, e13032 (2018).

Dixon, M. L. et al. Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. PNAS 115, E1598–E1607 (2018).

Ahrens, M.-M., Veniero, D., Freund, I. M., Harvey, M. & Thut, G. Both dorsal and ventral attention network nodes are implicated in exogenously driven visuospatial anticipation. Cortex 117, 168–181 (2019).

Liu, Y. et al. Deciding where to attend: large-scale network mechanisms underlying attention and intention revealed by graph-theoretic analysis. NeuroImage 157, 45–60 (2017).

Fiebelkorn, I. C., Pinsk, M. A. & Kastner, S. A dynamic interplay within the frontoparietal network underlies rhythmic spatial attention. Neuron 99, 842–853 (2018).

Michalka, S. W., Kong, L., Rosen, M. L., Shinn-Cunningham, B. G. & Somers, D. C. Short-term memory for space and time flexibly recruit complementary sensory-biased frontal lobe attention networks. Neuron 87, 882–892 (2015).

Noyce, A. L., Cestero, N., Michalka, S. W., Shinn-Cunningham, B. G. & Somers, D. C. Sensory-biased and multiple-demand processing in human lateral frontal cortex. J. Neurosci. 37, 8755–8766 (2017).

Pfurtscheller, G., Stancák, A. Jr & Neuper, C. Event-related synchronization (ERS) in the alpha band–an electrophysiological correlate of cortical idling: a review. Int J. Psychophysiol. 24, 39–46 (1996).

Payne, L. & Sekuler, R. On the importance of ignoring: alpha oscillations protect selective processing. Curr. Directions Psychological Sci. 23, 171–177 (2014).

Mazaheri, A. et al. Region-specific modulations in oscillatory alpha activity serve to facilitate processing in the visual and auditory modalities. Neuroimage 87, 356–362 (2014).

Kelly, S. P., Lalor, E. C., Reilly, R. B. & Foxe, J. J. Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. J. Neurophysiol. 95, 3844–3851 (2006).

Romei, V., Rihs, T., Brodbeck, V. & Thut, G. Resting electroencephalogram alpha- power over posterior sites indexes baseline visual cortex excitability. NeuroReport 19, 203–208 (2008).

Cavanagh, J. F. & Frank, M. J. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 18, 414–421 (2014).

Cavanagh, J. F., Zambrano-Vazquez, L. & Allen, J. J. B. Theta lingua franca: a common mid-frontal substrate for action monitoring processes. Psychophysiology 49, 220–238 (2011).

Keller, A. S., Payne, L. & Sekuler, R. Characterizing the roles of alpha and theta oscillations in multisensory attention. Neuropsychologia 99, 48–63 (2017).

Fellrath, J., Mottaz, A., Schnider, A., Guggisberg, A. G. & Ptak, R. Theta-band functional connectivity in the dorsal fronto-parietal network predicts goal-directed attention. Neuropsychologia 92, 20–30 (2016).

Shilyansky, C. et al. Effect of antidepressant treatment on cognitive impairments associated with depression: a randomised longitudinal study. Lancet Psychiatry 3, 425–435 (2016).

Luo, L. L. et al. A distinct pattern of memory and attention deficiency in patients with depression. Chin. Med. J. 126, 1144–1149 (2013).

Reppermund, S. et al. Persistent cognitive impairment in depression: the role of psychopathology and altered hypothalamic-pituitary-adrenocortical (HPA) system regulation. Biol. Psychiatry 62, 400–406 (2007).

Knorr, U., Madsen, J. M. & Kessing, L. V. The effect of selective serotonin reuptake inhibitors in healthy subjects revisited: a systematic review of the literature. Exp. Clin. Psychopharmacol. 27, 413–432 (2019).

Mahableshwarkar, A. R., Zajecka, J., Jacobson, W., Chen, Y. & Keefe, R. S. A randomized, placebo-controlled, active-reference, double-blind, flexible-dose study of the efficacy of vortioxetine on cognitive function in major depressive disorder. Neuropsychopharmacology 40, 2025–2037 (2015).

McIntyre, R. S. et al. Efficacy of vortioxetine on cognitive functioning in working patients with major depressive disorder. J. Clin. psychiatry 78, 115–121 (2017).

Arnsten, A. F. Catecholamine influences on dorsolateral prefrontal cortical networks. Biol. Psychiatry 69, e89–e99 (2011).

Corp, S. A., Gitlin, M. J. & Altshuler, L. L. A review of the use of stimulants and stimulant alternatives in treating bipolar depression and major depressive disorder. J. Clin. Psychiatry 75, 1010–1018 (2014).

Tamminga, H. G., Reneman, L., Huizenga, H. M. & Geurts, H. M. Effects of methylphenidate on executive functioning in attention-deficit/hyperactivity disorder across the lifespan: a meta-regression analysis. Psychol. Med. 46, 1791–1807 (2016).

Linssen, A. M., Sambeth, A., Vuurman, E. F. & Riedel, W. J. Cognitive effects of methylphenidate in healthy volunteers: a review of single dose studies. Int J. Neuropsychopharmacol. 17, 961–977 (2014).

Rapoport, J. L. et al. Dextroamphetamine. Its cognitive and behavioral effects in normal and hyperactive boys and normal men. Arch. Gen. Psychiatry 37, 933–943 (1980).

MacQueen, D. A. Amphetamine improves mouse and human attention in the 5-choice continuous performance test. Neuropharmacology 138, 87–96 (2018).

Paton, K. et al. Methylphenidate improves some but not all measures of attention, as measured by the TEA-Ch in medication-naive children with ADHD. Child Neuropsychol. 20, 303–318 (2014).

ter Huurne, N. Methylphenidate alters selective attention by amplifying salience. Psychopharmacol. (Berl.) 232, 4317–4323 (2015).

Servan-Schreiber, D., Carter, C. S., Bruno, R. M. & Cohen, J. D. Dopamine and the mechanisms of cognition: Part II. D-amphetamine effects in human subjects performing a selective attention task. Biol. Psychiatry 43, 723–729 (1998).

Conners, C. K. et al. Bupropion hydrochloride in attention deficit disorder with hyperactivity. J. Am. Acad. Child Adolesc. Psychiatry 35, 1314–1321 (1996).

Acheson, A. & de Wit, H. Bupropion improves attention but does not affect impulsive behavior in healthy young adults. Exp. Clin. Psychopharmacol. 16, 113–123 (2008).

Cope, Z. A. et al. Modafinil improves attentional performance in healthy, non-sleep deprived humans at doses not inducing hyperarousal across species. Neuropharmacology 125, 254–262 (2017).

Ikeda, Y. et al. Modafinil enhances alerting-related brain activity in attention networks. Psychopharmacol. (Berl.) 234, 2077–2089 (2017).

Turner, D. C., Clark, L., Dowson, J., Robbins, T. W. & Sahakian, B. J. Modafinil improves cognition and response inhibition in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry 55, 1031–1040 (2004).

DeBattista, C., Lembke, A., Solvason, H. B., Ghebremichael, R. & Poirier, J. A prospective trial of modafinil as an adjunctive treatment of major depression. J. Clin. Psychopharmacol. 24, 87–90 (2004).

Jung, K. Y. et al. Sternberg working memory performance following treatment with pramipexole in patients with moderate-to-severe restless legs syndrome. Sleep. Med. 16, 703–708 (2015).

Faraone, S. V. et al. Atomoxetine and stroop task performance in adult attention-deficit/hyperactivity disorder. J. Child Adolesc. Psychopharmacol. 15, 664–670 (2005).

Tian, Y. et al. Venlafaxine treatment reduces the deficit of executive control of attention in patients with major depressive disorder. Sci. Rep. 6, 28028 (2016).

Gualtieri, C. T. & Johnson, L. G. Bupropion normalizes cognitive performance in patients with depression. MedGenMed 9, 22 (2007).

Siepmann, T. et al. The effects of venlafaxine on cognitive functions and quantitative EEG in healthy volunteers. Pharmacopsychiatry 41, 146–150 (2008).

Greer, T. L., Dunderajan, P., Grannemann, B. D., Kurian, B. T. & Trivedi, M. H. Does duloxetine improve cognitive function independently of its antidepressant effect in patients with major depressive disorder and subjective reports of cognitive dysfunction? Depress Res. Treat. 2014, 1–13 (2014).

Taylor, F. B. & Russo, J. Comparing guanfacine and dextroamphetamine for the treatment of adult attention-deficit/hyperactivity disorder. J. Clin. Psychopharmacol. 21, 223–228 (2001).

Arnsten, A. F. Stress weakens prefrontal networks: molecular insults to higher cognition. Nat. Neurosci. 18, 1376–1385 (2015).

Berridge, C. W. & Arnsten, A. F. Psychostimulants and motivated behavior: arousal and cognition. Neurosci. Biobehav Rev. 37(9 Pt A), 1976–1984 (2013).

van Belkum, S. M., Bosker, F. J., Kortekaas, R., Beersma, D. G. & Schoevers, R. A. Treatment of depression with low-strength transcranial pulsed electromagnetic fields: a mechanistic point of view. Prog. Neuropsychopharmacol. Biol. Psychiatry 71, 137–143 (2016).

Marek, S. & Dosenbach, N. U. F. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues Clin. Neurosci. 20, 133–140 (2018).

Hwang, J. H., Kim, S. H., Park, C. S., Bang, S. A. & Kim, S. E. Acute high-frequency rTMS of the left dorsolateral prefrontal cortex and attentional control in healthy young men. Brain Res. 1329, 152–158 (2010).

Levkovitz, Y. Deep transcranial magnetic stimulation over the prefrontal cortex: evaluation of antidepressant and cognitive effects in depressive patients. Brain Stimul. 2, 188–200 (2009).

Naim-Feil, J. et al. Neuromodulation of attentional control in major depression: a Pilot DeepTMS study. Neural plasticity 2016, 5760141 (2016).

Vanderhasselt, M. A., De Raedt, R., Baeken, C., Leyman, L. & D’haenen, H. A single session of rTMS over the left dorsolateral prefrontal cortex influences attentional control in depressed patients. World J. Biol. Psychiatry 10, 34–42 (2009).

Loo, C. K. et al. Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial. Br. J. Psychiatry 200, 52–59 (2012).

Iimori, T. et al. Effectiveness of the prefrontal repetitive transcranial magnetic stimulation on cognitive profiles in depression, schizophrenia, and Alzheimer’s disease: a systematic review. Prog. Neuropsychopharmacol. Biol. Psychiatry 88, 31–40 (2019).

Martin, D. M., McClintock, S. M., Forster, J. & Loo, C. K. Does therapeutic repetitive transcranial magnetic stimulation cause cognitive enhancing effects in patients with neuropsychiatric conditions? A systematic review and meta-analysis of randomized controlled trials. Neuropsychol. Rev. 26, 295–309 (2016).

Demirtas-Tatlidede, A., Vhabzadeh-Hagh, A. M. & Pascual-Leone, A. Can non-invasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology 64, 566–578 (2012).

Deslandes, A. C. et al. Effect of aerobic training on EEG alpha asymmetry and depressive symptoms in the elderly: a 1-year follow-up study. Braz. J. Med. Biol. Res. 43, 585–592 (2010).

Smith, P. J. et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom. Med. 72, 239–252 (2010).

Kubesch, S. et al. Aerobic endurance exercise improves executive functions in depressed patients. J. Clin. Psychiatry 64, 1005–1012 (2003).

Vasques, P. E., Moraes, H., Silveira, H., Deslandes, A. C. & Laks, J. Acute exercise improves cognition in the depressed elderly: the effect of dual-tasks. Clinics 66, 1553–1557 (2011).

Greer, T. L., Furman, J. L. & Trivedi, M. H. Evaluation of the benefits of exercise on cognition in major depressive disorder. Gen. Hospital Psychiatry 49, 19–25 (2017).

Brondino, N. et al. A systematic review of cognitive effects of exercise in depression. Acta Psychiatr. Scandinavica 135, 285–295 (2017).

Baer, R. A. Mindfulness training as a clinical intervention: a conceptual and empirical review. Clin. Psychol.: Sci. Pract. 10, 125–143 (2003).

Chiesa, A., Calati, R. & Serretti, A. Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clin. Psychol. Rev. 31, 449–464 (2011).

Wielgosz, J., Goldberg, S. B., Kral, T. R. A., Dunne, J. D. & Davidson, R. J. Mindfulness meditation and psychopathology. Annu Rev. Clin. Psychol. 15, 285–316 (2019).

Goldberg, S. B. et al. Mindfulness-based cognitive therapy for the treatment of current depressive symptoms: a meta-analysis. Cogn. Behav. Ther. 8, 1–18 (2019).

Kerr, C. E. et al. Effects of mindfulness meditation training on anticipatory alpha modulation in primary somatosensory cortex. Brain Res. Bull. 85, 96–103 (2011).

Bhayee, S. et al. Attentional and affective consequences of technology supported mindfulness training: a randomised, active control, efficacy trial. BMC Psychol. 4, 60 (2016).

Anguera, J. A. et al. Video game training enhances cognitive control in older adults. Nature 501, 97–101 (2013).

Anguera, J. A., Gunning, F. M. & Areán, P. A. Improving late life depression and cognitive control through the use of therapeutic video game technology: A proof‐of‐concept randomized trial. Depression Anxiety 34, 508–517 (2017).

Motter, J. N. et al. Computerized cognitive training and functional recovery in major depressive disorder: a meta-analysis. J. Affect. Disord. 189, 184–191 (2016).

Arean, P. A. et al. The use and effectiveness of mobile apps for depression: results from a fully remote clinical trial. J. Med. Internet Res. 18, e330 (2016).

Iwata, M., Ota, K. T. & Duman, R. S. The inflammasome: pathways linking psychological stress, depression, and systemic illnesses. Brain, Behav., Immun. 31, 105–114 (2013).

Burke, H. M., Davis, M. C., Otte, C. & Mohr, D. C. Depression and cortisol responses to psychological stress: a meta-analysis. Psychoneuroendocrinology 30, 846–856 (2005).

Sapolsky, R. M. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch. Gen. Psychiatry 57, 925–935 (2000).

Wellman, C. L. Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J. Neurobiol. 49, 245–253 (2001).

Hyman, J. M., Zilli, E. A., Paley, A. M. & Hasselmo, M. E. Working memory performance correlates with prefrontal-hippocampal theta interactions but not with prefrontal neuron firing rates. Front. Integr. Neurosci. 4, 2 (2010).

Yu, J. Y. & Frank, L. M. Hippocampal-cortical interaction in decision making. Neurobiol. Learn. Mem. 117, 34–41 (2015).

Belleau, E. L., Treadway, M. T. & Pizzagalli, D. A. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol. Psychiatry 85, 443–453 (2019).

Vertes, R. P. Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142, 1–20 (2006).

Mac Giollabhui, N., Olino, T. M., Nielsen, J., Abramson, L. Y. & Alloy, L. B. Is worse attention a risk factor for or a consequence of depression, or are worse attention and depression better accounted for by stress? A prospective test of three hypotheses. Clin. Psychological Sci. 7, 93–109 (2019).

Fernandes, B. S. et al. The new field of ‘precision psychiatry’. BMC Med. 15, 80 (2017).

Williams, L. M. Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiatry 3, 472–480 (2016).