Paxillin Phosphorylation Controls Invadopodia/Podosomes Spatiotemporal Organization

Molecular Biology of the Cell - Tập 19 Số 2 - Trang 633-645 - 2008
Cédric Badowski1,2, Géraldine Pawlak1,2, Alexeï Grichine3,2, Anne Chabadel4, Christiane Oddou1,2, Pierre Jurdic4, Martin Pfaff1,2, Corinne Albigès‐Rizo1,2, Marc R. Block1,2
1*Equipe DySAD, Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale U823, 38042 Grenoble Cedex 09, France;
2Université Joseph Fourier, 38041 Grenoble Cedex 09, France;
3Cell Imaging Platform, Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale U823, 38706 La Tronche Cedex, France; and
4Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France

Tóm tắt

In Rous sarcoma virus (RSV)-transformed baby hamster kidney (BHK) cells, invadopodia can self-organize into rings and belts, similarly to podosome distribution during osteoclast differentiation. The composition of individual invadopodia is spatiotemporally regulated and depends on invadopodia localization along the ring section: the actin core assembly precedes the recruitment of surrounding integrins and integrin-linked proteins, whereas the loss of the actin core was a prerequisite to invadopodia disassembly. We have shown that invadopodia ring expansion is controlled by paxillin phosphorylations on tyrosine 31 and 118, which allows invadopodia disassembly. In BHK-RSV cells, ectopic expression of the paxillin mutant Y31F-Y118F induces a delay in invadopodia disassembly and impairs their self-organization. A similar mechanism is unraveled in osteoclasts by using paxillin knockdown. Lack of paxillin phosphorylation, calpain or extracellular signal-regulated kinase inhibition, resulted in similar phenotype, suggesting that these proteins belong to the same regulatory pathways. Indeed, we have shown that paxillin phosphorylation promotes Erk activation that in turn activates calpain. Finally, we observed that invadopodia/podosomes ring expansion is required for efficient extracellular matrix degradation both in BHK-RSV cells and primary osteoclasts, and for transmigration through a cell monolayer.

Từ khóa


Tài liệu tham khảo

Abram C. L., 2003, J. Biol. Chem, 278, 16844, 10.1074/jbc.M300267200

Artym V. V., 2006, Cancer Res, 66, 3034, 10.1158/0008-5472.CAN-05-2177

Ayala I., 2006, Eur. J. Cell Biol, 85, 159, 10.1016/j.ejcb.2005.09.005

Baldassarre M., 2006, Eur. J. Cell Biol, 85, 1217, 10.1016/j.ejcb.2006.08.003

10.1091/mbc.e02-05-0308

Birge R. B., 1993, Mol. Cell. Biol, 13, 4648, 10.1128/MCB.13.8.4648

Bowden E. T., 1999, Oncogene, 18, 4440, 10.1038/sj.onc.1202827

Bowden E. T., 2006, Exp. Cell Res, 312, 1240, 10.1016/j.yexcr.2005.12.012

Brabek J., 2005, Mol. Cancer Res, 3, 307, 10.1158/1541-7786.MCR-05-0015

Brown M. C., 2004, Physiol. Rev, 84, 1315, 10.1152/physrev.00002.2004

Buccione R., 2004, Nat. Rev. Mol. Cell Biol, 5, 647, 10.1038/nrm1436

Collin O., 2006, J. Cell Sci, 119, 1914, 10.1242/jcs.02838

Calle Y., 2006, J. Cell Sci, 119, 2375, 10.1242/jcs.02939

Chellaiah M. A., 2000, J. Biol. Chem, 275, 11993, 10.1074/jbc.275.16.11993

Cory G. O., 2002, J. Biol. Chem, 277, 45115, 10.1074/jbc.M203346200

10.1091/mbc.e02-07-0389

Destaing O., 2005, J. Cell Sci, 118, 2901, 10.1242/jcs.02425

Favata M. F., 1998, J. Biol. Chem, 273, 18623, 10.1074/jbc.273.29.18623

Gavazzi I., 1989, J. Cell Sci, 94, 85, 10.1242/jcs.94.1.85

Gimona M., 2006, J. Biochem. Cell Biol, 38, 1875, 10.1016/j.biocel.2006.05.003

10.1091/mbc.e02-11-0743

Glading A., 2001, J. Biol. Chem, 276, 23341, 10.1074/jbc.M008847200

Hall T. J., 1994, Biochem. Biophys. Res. Commun, 199, 1237, 10.1006/bbrc.1994.1363

Huang C., 1997, J. Biol. Chem, 272, 19248, 10.1074/jbc.272.31.19248

Jurdic P., 2006, Eur. J. Cell Biol, 85, 195, 10.1016/j.ejcb.2005.09.008

Lee E., 2002, Proc. Natl. Acad. Sci. USA, 99, 161, 10.1073/pnas.012607799

Linder S., 2007, Trends Cell Biol, 17, 107, 10.1016/j.tcb.2007.01.002

Linder S., 2003, Trends Cell Biol, 13, 376, 10.1016/S0962-8924(03)00128-4

Linder S., 2000, J. Cell Sci, 113, 4165, 10.1242/jcs.113.23.4165

Linder S., 2005, J. Cell Sci, 118, 2079, 10.1242/jcs.02390

Linder S., 1999, Proc. Natl. Acad. Sci. USA, 96, 9648, 10.1073/pnas.96.17.9648

Luxenburg C., 2006, J. Cell Sci, 119, 4878, 10.1242/jcs.03271

Marchisio P. C., 1988, Blood, 72, 830, 10.1182/blood.V72.2.830.830

Marchisio P. C., 1984, J. Cell Biol, 99, 1696, 10.1083/jcb.99.5.1696

Marchisio P. C., 1987, Exp. Cell Res, 169, 202, 10.1016/0014-4827(87)90238-2

McNiven M. A., 2004, Front. Biosci, 9, 1944, 10.2741/1348

Mizutani K., 2002, Cancer Res, 62, 669

Moreau V., 2003, Mol. Cell. Biol, 23, 6809, 10.1128/MCB.23.19.6809-6822.2003

Mueller S. C., 1991, J. Cell Sci, 99, 213, 10.1242/jcs.99.2.213

Mueller S. C., 1992, J Cell Biol, 119, 1309, 10.1083/jcb.119.5.1309

Nakamura K., 2000, J. Biol. Chem, 275, 27155, 10.1016/S0021-9258(19)61492-4

Ochoa G. C., 2000, J. Cell Biol, 150, 377, 10.1083/jcb.150.2.377

Petit V., 2000, J. Cell Biol, 148, 957, 10.1083/jcb.148.5.957

Pfaff M., 2001, J. Cell Sci, 114, 2775, 10.1242/jcs.114.15.2775

Rodriguez L. G., 2005, J. Cell. Physiol, 202, 285, 10.1002/jcp.20122

Salgia R., 1995, J. Biol. Chem, 270, 5039, 10.1074/jbc.270.10.5039

Schaller M. D., 2001, Oncogene, 20, 6459, 10.1038/sj.onc.1204786

Schaller M. D., 1995, Mol. Cell. Biol, 15, 2635, 10.1128/MCB.15.5.2635

Tarone G., 1985, Exp. Cell Res, 159, 141, 10.1016/S0014-4827(85)80044-6

10.1091/mbc.e06-03-0187

Turner C. E., 1990, J. Cell Biol, 111, 1059, 10.1083/jcb.111.3.1059

Vindis C., 2004, J. Biol. Chem, 279, 27965, 10.1074/jbc.M401295200

Webb B. A., 2007, Eur. J. Cell Biol, 86, 189, 10.1016/j.ejcb.2007.01.003

Webb D. J., 2004, Nat. Cell Biol, 6, 154, 10.1038/ncb1094

Westhoff M. A., 2004, Mol. Cell. Biol, 24, 8113, 10.1128/MCB.24.18.8113-8133.2004

Yamaguchi H., 2005, J. Cell Biol, 168, 441, 10.1083/jcb.200407076

Yoneda T., 1993, J. Clin. Invest, 91, 2791, 10.1172/JCI116521

Zaidel-Bar R., 2007, J. Cell Sci, 120, 137, 10.1242/jcs.03314