Patterns of tsetse abundance and trypanosome infection rates among habitats of surveyed villages in Maasai steppe of northern Tanzania

Anibariki Ngonyoka1,2, Paul S. Gwakisa1,3, Anna B. Estes4,1, Linda P. Salekwa3, Happiness J. Nnko1,5, Peter J. Hudson4,1, Isabella M. Cattadori4
1School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
2Department of Conservation Biology, School of Biological Sciences, University of Dodoma, Dodoma, Tanzania
3Genome Sciences Center, Department of Microbiology, Parasitology and Immunology. College of Veterinary and Medical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
4Centre for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA
5Department of Geography and Environmental studies, University of Dodoma, Dodoma, Tanzania

Tóm tắt

Changes of land cover modify the characteristics of habitat, host-vector interaction and consequently infection rates of disease causing agents. In this paper, we report variations in tsetse distribution patterns, abundance and infection rates in relation to habitat types and age in the Maasai Steppe of northern Tanzania. In Africa, Tsetse-transmitted trypanosomiasis negatively impacted human life where about 40 million people are at risk of contracting the disease with dramatic socio-economical consequences, for instance, loss of livestock, animal productivity, and manpower. We trapped tsetse flies in dry and wet seasons between October 2014 and May 2015 in selected habitats across four villages: Emboreet, Loiborsireet, Kimotorok and Oltukai adjacent to protected areas. Data collected include number and species of tsetse flies caught in baited traps, PCR identification of trypanosome species and extraction of monitored Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectrometer (MODIS). Our findings demonstrate the variation of tsetse fly species abundance and infection rates among habitats in surveyed villages in relation to NDVI and host abundance. Results have shown higher tsetse fly abundance in Acacia-swampy ecotone and riverine habitats for Emboreet and other villages, respectively. Tsetse abundance was inconsistent among habitats in different villages. Emboreet was highly infested with Glossina swynnertoni (68%) in ecotone and swampy habitats followed by G. morsitans (28%) and G. pallidipes (4%) in riverine habitat. In the remaining villages, the dominant tsetse fly species by 95% was G. pallidipes in all habitats. Trypanosoma vivax was the most prevalent species in all infected flies (95%) with few observations of co-infections (with T. congolense or T. brucei). The findings of this study provide a framework to mapping hotspots of tsetse infestation and trypanosomiasis infection and enhance the communities to plan for effective control of trypanosomiasis.

Từ khóa


Tài liệu tham khảo

Reid RS, Kruska RL, Deichmann U, Thornton PK, Leak SGA. Human population growth and the extinction of the tsetse fly. Agric Ecosyst Environ. 2000;77:227–36.

Muriuki GW, Njoka TJ, Reid RS, Nyariki DM. Tsetse control and land-use change in Lambwe valley, south-western Kenya. Agric Ecosyst Environ. 2005;106:99–107.

Maudlin I. African trypanosomiasis. Ann Trop Med Parasitol. 2006;100:679–701.

Swallow BM. Impacts of trypanosomiasis on African agriculture. Rome; 1999.

Milligan PJM, Baker RD. Trends and perspectives. Parasitology. 1988;96:211–39.

Moore S, Shrestha S, Tomlinson KW, Vuong H. Predicting the effect of climate change on African trypanosomiasis: integrating epidemiology with parasite and vector biology. J R Soc Interface. 2012;9:817–30.

Malele I, Craske L, Knight C, Ferris V, Njiru Z, Hamilton P, et al. The use of specific and generic primers to identify trypanosome infections of wild tsetse flies in Tanzania by PCR. Infect Genet Evol. 2003;3:271–9.

Geiger A, Ponton F, Simo G. Adult blood-feeding tsetse flies, trypanosomes, microbiota and the fluctuating environment in sub-Saharan Africa. ISME J. 2015;9:1496–507.

Cecchi G, Paone M, Argilés Herrero R, Vreysen MJB, Mattioli RC. Developing a continental atlas of the distribution and trypanosomal infection of tsetse flies (Glossina species). Parasit Vectors. 2015;8:284.

Franco JR, Simarro PP, Diarra A, Ruiz-Postigo JA, Jannin JG. The journey towards elimination of gambiense human African trypanosomiasis: not far, nor easy. Parasitology. 2014;141:748–60.

Funk S, Nishiura H, Heesterbeek H, Edmunds WJ, Checchi F. Identifying transmission cycles at the human-animal interface: The role of animal reservoirs in maintaining gambiense human african trypanosomiasis. PLoS Comput Biol. 2013;9:e1002855. doi:10.1371/journal.pcbi.1002855.

MacLean LM, Odiit M, Chisi JE, Kennedy PGE, Sternberg JM. Focus–specific clinical profiles in human african trypanosomiasis caused by Trypanosoma brucei rhodesiense. PLoS Negl Trop Dis. 2010;4:906–1935.

Kaare MT, Picozzi K, Mlengeya T, Fèvre EM, Mellau LS, Mtambo MM, et al. Sleeping sickness--a re-emerging disease in the Serengeti? Travel Med Infect Dis. 2007;5:117–24.

Cecchi G, Mattioli RC, Slingenbergh J, De La Rocque S. Land cover and tsetse fly distributions in sub-Saharan Africa. Med Vet Entomol. 2008;22:364–73.

Lambin EF, Tran A, Vanwambeke SO, Linard C, Soti V. Pathogenic landscapes: interactions between land, people, disease vectors, and their animal hosts. Int J Health Geogr. 2010;9:54.

Van Den Bossche P, Staak C. The importance of cattle as a food source for Glossina morsitans morsitans in Katete district, Eastern Province. Zambia Acta Trop. 1997;65:105–9.

Wamwiri FN, Changasi RE. Tsetse flies (Glossina) as vectors of human African trypanosomiasis: A review. Biomed Res Int. 2016; 2016:8. doi.org/10.1155/2016/6201350

Hargrove JW. Tsetse population dynamics. In: Mauldin I, Peter H, Michael A, editors. Trypanosomiases. Wallingford: CAB; 2004. p. 113–37.

Van den Bossche P, Rocque S de La, Hendrickx G, Bouyer J. A changing environment and the epidemiology of tsetse-transmitted livestock trypanosomiasis. Trends Parasitol 2010;26(5): 236–243.

Potts WH. The distribution of tsetse-flies in Tanganyika territory. Bull Entomol Res. 1937;28:129–48.

Lynn SJ. Crisis aversion in an uncertain world: cultivation by east African pastoralists. Tipping Points Humanit Cris: From Hot Spots to Hot Systems. 2010;13:66–88.

Miller BW, Leslie PW, McCabe JT. Coping with natural hazards in a conservation context: resource-use decisions of Maasai households during recent and historical droughts. Hum Ecol Springer US. 2014;42:753–68.

Msoffe FU, Ogutu JO, Kaaya J, Bedelian C, Said MY, Kifugo SC, et al. Participatory wildlife surveys in communal lands: a case study from Simanjiro. Tanzania Afr J Ecol. 2010;48:727–35.

Malele I, Magwisha HB, Nyingilili HS, Mamiro KA, Rukambile EJ, Daffa JW, et al. Multiple Trypanosoma infections are common amongst Glossina species in the new farming areas of Rufiji district. Tanzania Parasit Vectors. 2011;4:217.

Rogers DJ, Hay SI, Packer MJ. Predicting the distribution of tsetse flies in West Africa using temporal Fourier processed meteorological satellite data. Ann Trop Med Parasitol. 1996;90:225–41.

Wardlow BD, Egbert SL, Kastens JH. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. central Great Plains. Remote Sens Environ. 2007;108:290–310.

Torr SJ, Hall DR, Phelps RJ, Vale GA. Methods for dispensing odour attractants for tsetse flies (Diptera: Glossinidae). Bull Entomol Res. 1997;87:299–311.

Pollock JN. Training Manual for Tsetse Control Personnel. Vol.1: Tsetse biology, systematics and distribution, techniques. FAO; 1982.

Bruford MW, Hanotte O, Brookfield JFY, Burke T. Single-locus and multilocus DNA fingerprinting. In: Hoelzel AR, editor. Molecular genetic analysis of population: a Pract approach. 2nd ed. Oxford University press: Academic; 1992. p. 225–69.

Salekwa LP, Nnko HJ, Ngonyoka A, Estes AB, Agaba M, Gwakisa PS. Relative abundance of tsetse fly species and their infection rates in Simanjiro, Northern Tanzania. Livest Res Rural Dev. 2014;26:1–8.

Njiru ZK, Constantine CC, Guya S, Crowther J, Kiragu JM, Thompson RCA, et al. The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes. Parasitol Res. 2005;95:186–92.

R Development Core Team R. R: A Language and Environment for Statistical Computing. In: RDC T, editor. R Foundation for Statistical Computing; 2011. p. 409.

Crawley MJ. The R Book. West Sussex, England: John Wiley and Sons, LtD; 2007.

Leak S. Tsetse biology and ecology: their role in the epidemiology and control of trypanosomosis. Illustrate. Nairobi: ILRI (aka ILCA and ILRAD); 1999.

Van Den Bossche P, De Deken R. Seasonal variations in the distribution and abundance of the tsetse fly, Glossina morsitans morsitans in eastern Zambia. Med Vet Entomol Blackwell Science Ltd. 2002;16:170–6.

Woolhouse MEJ, McNamara JJ, Hargrove JW, Bealby KA. Distribution and abundance of trypanosome (subgenus Nannomonas) infections of the tsetse fly Glossina pallidipes in southern Africa. Mol Ecol. 1996;5:11–8.

Brightwell R, Dransfield RD, Williams BG. Factors affecting seasonal dispersal of the tsetse flies Glossina pallidipes and G. longipennis (Diptera: Glossinidae) at Nguruman, south-west Kenya. Bull Entomol res. Cambridge University Press. 1992;82:167–82.

Ngonyoka A, Gwakisa PS, Estes AB, Nnko HJ, Hudson PJ, Cattadori IM. Variation of tsetse fly abundance in relation to habitat and host presence in the Maasai steppe. Tanzania J Vector Ecol. 2017;42:34–43.

Ndegwa PN, Mihok S, Oyieke FA. Habitat preferences and activity patterns of Glossina swynnertoni Austen (Diptera: Glossinidae) in Aitong, Masai Mara, Kenya. Int J trop insect Sci. Cambridge University Press. 2001;21:113–22.

Sindato C, Malele I, Mwalimu C, Nyingilili HS, Kaboya S, Kombe E, et al. Seasonal variation in human African trypanosomiasis in Tarangire National Park in Babati District. Tanzania Tanzan Health Res Bull. 2007;9:2005–8.

Krafsur ES. Tsetse flies: genetics, evolution, and role as vectors. Infect Genet Evol. 2009;9:124–41.

Reifenberg JM, Cuisance D, Frezil JL, Cuny G, Duvallet G. Comparison of the susceptibility of different Glossina species to simple and mixed infections with Trypanosoma (Nannomonas) congolense savannah and riverine forest types. Med Vet Entomol. 1997;11:246–52.

Haines LR. Examining the tsetse teneral phenomenon and permissiveness to trypanosome infection. Front Cell Infect Microbiol. 2013;3:84.

Molyneux DH, Stiles JK. Trypanosomatid - vector interactions. Ann Soc Belg Med Trop. 1991;71:151–66.

Dipeolu OO, Adam K. On the use of membrane feeding to study the development of Trypanosoma brucei in Glossina. Acta Trop. 1974;31:185–201.

Aksoy S. Control of tsetse flies and Trypanosomes using molecular genetics. Vet Parasitol. 2003;115:125–45.

Dipeolu OO. Studies on development of Trypanonosomea congolense in tsetse flies (Glossina:Diptera) and the factors affecting it. Acta Protozool. 1975;14:241–51.

Soltys MA, Woo P. Trypanosomes producing disease in livestock in Africa. Parasit Protozoa. 1977;1:239–68.

Desowitz R. S and Fairbain H. The inflience of temperature on lenth of developmental cycle of Trypanosoma vivax in Glossina palpalis. Ann Trop Med Parasitol. 1955;49:161–3.