Patterns of temperature‐dependent sex determination in turtles

Wiley - Tập 270 Số 1 - Trang 3-15 - 1994
Michael A. Ewert1, Dale R. Jackson2, Craig E. Nelson1
1Department of Biology Indiana University Bloomington Indiana 47405‐6801
2Florida Natural Areas Inventory, Tallahassee, Florida 32303

Tóm tắt

Abstract

Among reptiles that show temperature‐dependent sex determination, sex ratios vary across constant incubation temperatures in ways sufficiently predictable to allow classification into patterns. One common pattern shows low temperatures yielding only males and high temperatures yielding only females. Another common pattern has low as well as high temperatures yielding only or mostly females and some intermediate temperatures yielding mostly males. Patterns tend to be associated with the direction of sexual dimorphism in adult size, especially for species with strong dimorphism.

Pivotal temperatures (those yielding 1:1 sex ratios) within the best‐documented species and genera tend to increase with both latitude and longitude across central and southern North America. These geographic trends probably reflect factors that affect nest temperatures (duration of growing season, insolation, and prevailing amounts of shading by vegetation).

Data from a population of the alligator snapping turtle (Macroclemys temminckii) suggest that some embryos are temperature‐independent females because these individuals become females even when they are shifted among male‐producing temperatures during development. These individuals are also more frequent in clutches of small eggs. In this and several other species, no constant incubation temperatures yield more than 75% males. © 1994 Wiley‐Liss, Inc.

Từ khóa


Tài liệu tham khảo

10.2307/2388383

Brooks R. J., 1985, Sex determination and hatchling sex ratio in northern population of Chelydra serpentina, Proc. Ann. Meet. SSAR and HL, Univ. So. Fla., Tampa, FL, 4–9 August 1985, 28, 40

10.1139/z91-375

10.1086/411613

Bull J. J., 1983, Evolution of Sex Determining Mechanisms

Bull J. J., 1988, How fundamental are Fisherian sex ratios?, Oxford Surv. Evol. Biol., 5, 96

10.1111/j.1558-5646.1989.tb02605.x

10.1111/j.1558-5646.1982.tb05049.x

10.1111/j.1558-5646.1982.tb05048.x

10.1016/0169-5347(86)90070-4

10.1086/284867

10.2307/1447251

Charnier M., 1966, Action de la température sur la sex‐ratio chez l'embryon d'Agama agama (Agamidae, Lacertilien), Soc. Biol. Ouest Afr., 160, 620

Charnov E. L., 1982, The Theory of Sex Allocation

10.1038/266828a0

10.1111/j.1558-5646.1992.tb01164.x

10.1016/0016-6480(91)90162-Y

10.1098/rstb.1988.0111

10.1093/icb/29.3.973

10.1017/CBO9780511585739.011

10.1111/j.1432-0436.1991.tb00216.x

Etchberger C. R.(1991)Mechanistic and Evolutionary Considerations of Temperature‐Dependent Sex Determination in Turtles. Unpublished Ph. D. dissertation Indiana University Bloomington.

10.1002/jez.1402640102

Ewert M. A., 1976, Nests, nesting and aerial basking of Macroclemys under natural conditions, and comparisons with Chelydra (Testudines: Chelydridae), Herpetologica, 32, 150

10.2307/1446248

Ewert M. A., 1990, An apparent co‐occurrence of genetic and environmental sex determination in a turtle, Am. Zool., 30, 56a

10.1038/296850a0

10.1890/0012-9658(2006)87[1445:SOEFDD]2.0.CO;2

Galbraith D. A.(1986)Age estimates survival growth and maturity of femaleChelydra serpentinaLinnaeus in Algonquin Provincial Park Ontario. Unpublished M. S. thesis University of Guelph Ontario.

10.1139/z87-398

10.1038/332832a0

10.1038/329198a0

10.2307/1466974

10.1093/genetics/131.1.155

10.1111/j.1558-5646.1991.tb04417.x

Joanen T., 1987, Wildlife Management: Crocodiles and Alligators, 533

Kiviat E., 1980, A Hudson River tidemarsh snapping turtle population, Trans. N. E. Sect. Wildl. Soc., 37, 158

10.2307/2410066

Lance V. A., 1992, A hormonal method to determine the sex of hatchling giant river turtles, Podocnemis expansa: Application to endangered species research, Am. Zool., 32, 16a

Lang J. W., 1987, Wildlife Management: Crocodiles and Alligators, 301

10.1002/jez.1402700105

10.1093/icb/29.3.935

10.1139/z91-324

10.1111/j.1558-5646.1992.tb01144.x

10.2307/1447148

10.1002/jez.1402700104

10.1163/156853891X00149

Packard G. C., 1989, Sexual differentiation and hatching success by painted turtles incubating in different thermal and hydric environments, Herpetologica, 45, 385

Pieau C., 1978, Effets de températures d'incubation basses et élevées, sur la differenciation sexuelle chez des embryons d'Emys orbicularis L. (Chélonien), C. R. Hebd. Séanc. Acad. Sci., Paris (Ser. D), 286, 121

10.1002/jmor.1051700308

10.1139/z85-378

Sousa R. R., 1990, Nest temperatures and incubation experiments suggest that incubation temperature controls adult sex ratio in Podocnemis unifilis in the Rio Guapore, Rhondonia, Brazil, Proc. Ann. Meet. HL and SSAR, Tulane Univ., New Orleans, LA, 5–9 August 1990, 38, 89

10.1111/j.1440-169X.1985.00117.x

10.1126/science.179.4068.90

10.1002/jez.1402650610

10.1002/jez.1402700106

Vogt R. C., 1992, Effects of incubation temperature on sex determination in a community of neotropical freshwater turtles in southern Mexico, Herpetologica, 48, 265

Webb G. J. W., 1984, Sex ratio and survivorship in the Australian freshwater crocodile Crocodylus johnstoni, Symp. Zool. Soc. London, 52, 319

Webb G. J. W., 1987, Wildlife Management: Crocodiles and Alligators, 507

Webb G. J. W., 1990, Proc. 10th Working Meet. IUCN‐SSC Crocodile Specialists Group. Gainesville, Florida, 23–27 April 1990, 253

Webb G. J. W., 1992, Proc. 11th Working Meet. IUCN‐SSC Crocodile Specialists Group. Victoria Falls, Zimbabwe, 3–7 August 1992, 203

10.1139/z91-378

10.2307/1563778

10.1002/jmor.1051250207

10.2307/2423727

10.1002/jmor.1051500212

10.1002/jmor.1051590103