Mẫu hình của sự vi phạm C và CP trong sự phân rã ba thân hadronic η và η′

Journal of High Energy Physics - Tập 2022 Số 2
Hakan Akdag1, Tobias Isken1, Bastian Kubis1
1Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, 53115, Bonn, Germany

Tóm tắt

Tóm tắtChúng tôi xây dựng các biên độ hadronic cho sự phân rã ba thân η′ → π+π−π0 và η′ → ηπ+π− theo cách không suy perturb, cho phép có sự bất đối xứng vi phạm C và CP trong các phân bố π+π−. Các biên độ này nhất quán với các ràng buộc về phân tích và đơn vị. Chúng tôi tìm thấy rằng các phân bố Dalitz hiện tại chính xác nhất được lấy bởi các hợp tác KLOE-2 và BESIII giới hạn các mẫu hình của những bất đối xứng này ở mức mỗi mille và phần trăm tương ứng. Đại diện phân tán của chúng tôi cho phép chúng tôi trích xuất các cường độ kết hợp riêng lẻ của các đóng góp vi phạm C và CP phát sinh từ các toán tử hiệu quả không tỉ lệ và tỉ lệ trong η′ → π+π−π0 và một toán tử hiệu quả không tỉ lệ trong η′ → ηπ+π−, trong khi những độ nhạy rất khác nhau đến các toán tử này có thể được hiểu từ các lập luận về đếm công suất xoắn.

Từ khóa


Tài liệu tham khảo

E.M. Purcell and N.F. Ramsey, On the possibility of electric dipole moments for elementary particles and nuclei, Phys. Rev. 78 (1950) 807 [INSPIRE].

M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].

R.J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics, Phys. Lett. B 88 (1979) 123 [Erratum ibid. 91 (1980) 487] [INSPIRE].

A. Pich and E. de Rafael, Strong CP-violation in an effective chiral Lagrangian approach, Nucl. Phys. B 367 (1991) 313 [INSPIRE].

M. Gorchtein, Nucleon EDM and rare decays of eta and eta-prime mesons, arXiv:0803.2906 [INSPIRE].

T. Gutsche et al., CP-violating decays of the pseudoscalars η and η′ and their connection to the electric dipole moment of the neutron, Phys. Rev. D 95 (2017) 036022 [arXiv:1612.02276] [INSPIRE].

A.S. Zhevlakov, M. Gorchtein, A.N. Hiller Blin, T. Gutsche and V.E. Lyubovitskij, Bounds on rare decays of η and η′ mesons from the neutron EDM, Phys. Rev. D 99 (2019) 031703 [arXiv:1812.00171] [INSPIRE].

A.S. Zhevlakov, T. Gutsche and V.E. Lyubovitskij, Updated limits on the CP-violating ηππ and η′ππ couplings derived from the neutron EDM, Phys. Rev. D 99 (2019) 115004 [arXiv:1904.08154] [INSPIRE].

A.S. Zhevlakov and V.E. Lyubovitskij, Deuteron EDM induced by CP violating couplings of pseudoscalar mesons, Phys. Rev. D 101 (2020) 115041 [arXiv:2003.12217] [INSPIRE].

L. Gan, B. Kubis, E. Passemar and S. Tulin, Precision tests of fundamental physics with η and η′ mesons, Phys. Rept. 945 (2022) 2191 [arXiv:2007.00664] [INSPIRE].

I.B. Khriplovich, What do we know about T odd but P even interaction?, Nucl. Phys. B 352 (1991) 385 [INSPIRE].

R.S. Conti and I.B. Khriplovich, New limits on T odd, P even interactions, Phys. Rev. Lett. 68 (1992) 3262 [INSPIRE].

J. Engel, P.H. Frampton and R.P. Springer, Effective Lagrangians and parity conserving time reversal violation at low-energies, Phys. Rev. D 53 (1996) 5112 [nucl-th/9505026] [INSPIRE].

M.J. Ramsey-Musolf, Electric dipole moments and the mass scale of new T violating, P conserving interactions, Phys. Rev. Lett. 83 (1999) 3997 [Erratum ibid. 84 (2000) 5681] [hep-ph/9905429] [INSPIRE].

A. Kurylov, G.C. McLaughlin and M.J. Ramsey-Musolf, Constraints on T odd, P even interactions from electric dipole moments, revisited, Phys. Rev. D 63 (2001) 076007 [hep-ph/0011185] [INSPIRE].

W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

H.-L. Li, Z. Ren, J. Shu, M.-L. Xiao, J.-H. Yu and Y.-H. Zheng, Complete set of dimension-eight operators in the standard model effective field theory, Phys. Rev. D 104 (2021) 015026 [arXiv:2005.00008] [INSPIRE].

C.W. Murphy, Dimension-8 operators in the Standard Model Effective Field Theory, JHEP 10 (2020) 174 [arXiv:2005.00059] [INSPIRE].

M. Simonius, On time reversal violation in the nucleon-nucleon system, Phys. Lett. B 58 (1975) 147 [INSPIRE].

S. Gardner and J. Shi, Patterns of CP-violation from mirror symmetry breaking in the η → π+π−π0 Dalitz plot, Phys. Rev. D 101 (2020) 115038 [arXiv:1903.11617] [INSPIRE].

J.G. Layter, J.A. Appel, A. Kotlewski, W.-Y. Lee, S. Stein and J.J. Thaler, Measurement of the charge asymmetry in the decay η → π+π−π0, Phys. Rev. Lett. 29 (1972) 316 [INSPIRE].

T.D. Lee, Possible C-noninvariant effects in the 3π decay modes of η0 and ω0, Phys. Rev. 139 (1965) B1415 [INSPIRE].

M. Nauenberg, The η → π+π−π0 decay with C-violation, Phys. Lett. 17 (1965) 329.

KLOE-2 collaboration, Precision measurement of the η → π+π−π0 Dalitz plot distribution with the KLOE detector, JHEP 05 (2016) 019 [arXiv:1601.06985] [INSPIRE].

M. Gormley et al., Experimental test of C invariance in η → π+π − π0, Phys. Rev. Lett. 21 (1968) 402 [INSPIRE].

M. Gormley, E. Hyman, W.-Y. Lee, T. Nash, J. Peoples, C. Schultz et al., Experimental determination of the dalitz-plot distribution of the decays η → π+π−π0 and η → π+π−γ, and the branching ratio η → π+ π−γ/η → π+π−π0, Phys. Rev. D 2 (1970) 501 [INSPIRE].

M.R. Jane et al., A measurement of the charge asymmetry in the decay η → π+π−π0, Phys. Lett. B 48 (1974) 260 [INSPIRE].

KLOE collaboration, Determination of η → π+π−π0 Dalitz plot slopes and asymmetries with the KLOE detector, JHEP 05 (2008) 006 [arXiv:0801.2642] [INSPIRE].

WASA-at-COSY collaboration, Measurement of the η → π+π−π0 Dalitz plot distribution, Phys. Rev. C 90 (2014) 045207 [arXiv:1406.2505] [INSPIRE].

BESIII collaboration, Measurement of the Matrix Elements for the Decays η → π+π−π0 and η/η′ → π0π0π0, Phys. Rev. D 92 (2015) 012014 [arXiv:1506.05360] [INSPIRE].

J.H. Christenson, J.W. Cronin, V.L. Fitch and R. Turlay, Evidence for the 2π Decay of the $$ {K}_2^0 $$ Meson, Phys. Rev. Lett. 13 (1964) 138 [INSPIRE].

T.D. Lee and L. Wolfenstein, Analysis of CP noninvariant interactions and the $$ {K}_1^0 $$, $$ {K}_2^0 $$ system, Phys. Rev. 138 (1965) B1490 [INSPIRE].

J. Prentki and M.J.G. Veltman, Possibility of CP-violation in semistrong interactions, Phys. Lett. 15 (1965) 88 [INSPIRE].

C. Ditsche, B. Kubis and U.-G. Meißner, Electromagnetic corrections in η → 3π decays, Eur. Phys. J. C 60 (2009) 83 [arXiv:0812.0344] [INSPIRE].

S.P. Schneider, B. Kubis and C. Ditsche, Rescattering effects in η → 3π decays, JHEP 02 (2011) 028 [arXiv:1010.3946] [INSPIRE].

J. Gasser and H. Leutwyler, η → 3π to one loop, Nucl. Phys. B 250 (1985) 539 [INSPIRE].

N.N. Khuri and S.B. Treiman, Pion-pion scattering and K± → 3π decay, Phys. Rev. 119 (1960) 1115 [INSPIRE].

D.G. Sutherland, Current algebra and the decay η → 3π, Phys. Lett. 23 (1966) 384 [INSPIRE].

J.S. Bell and D.G. Sutherland, Current algebra and η → 3π, Nucl. Phys. B 4 (1968) 315 [INSPIRE].

R. Baur, J. Kambor and D. Wyler, Electromagnetic corrections to the decays η → 3π, Nucl. Phys. B 460 (1996) 127 [hep-ph/9510396] [INSPIRE].

K. Kampf, M. Knecht, J. Novotný and M. Zdráhal, Analytical dispersive construction of η → 3π amplitude: first order in isospin breaking, Phys. Rev. D 84 (2011) 114015 [arXiv:1103.0982] [INSPIRE].

P. Guo, I.V. Danilkin, D. Schott, C. Fernández-Ramírez, V. Mathieu and A.P. Szczepaniak, Three-body final state interaction in η → 3π, Phys. Rev. D 92 (2015) 054016 [arXiv:1505.01715] [INSPIRE].

P. Guo, I.V. Danilkin, C. Fernández-Ramírez, V. Mathieu and A.P. Szczepaniak, Three-body final state interaction in η → 3π updated, Phys. Lett. B 771 (2017) 497 [arXiv:1608.01447] [INSPIRE].

G. Colangelo, S. Lanz, H. Leutwyler and E. Passemar, η → 3π: study of the Dalitz plot and extraction of the quark mass ratio Q, Phys. Rev. Lett. 118 (2017) 022001 [arXiv:1610.03494] [INSPIRE].

M. Albaladejo and B. Moussallam, Extended chiral Khuri-Treiman formalism for η → 3π and the role of the a0(980), f0(980) resonances, Eur. Phys. J. C 77 (2017) 508 [arXiv:1702.04931] [INSPIRE].

G. Colangelo, S. Lanz, H. Leutwyler and E. Passemar, Dispersive analysis of η → 3π, Eur. Phys. J. C 78 (2018) 947 [arXiv:1807.11937] [INSPIRE].

K. Kampf, M. Knecht, J. Novotný and M. Zdráhal, Dispersive construction of two-loop P → πππ (P = K, η) amplitudes, Phys. Rev. D 101 (2020) 074043 [arXiv:1911.11762] [INSPIRE].

BESIII collaboration, Measurement of the matrix elements for the decays η′ → ηπ+π− and η′ → ηπ0π0, Phys. Rev. D 97 (2018) 012003 [arXiv:1709.04627] [INSPIRE].

V. Dorofeev et al., Study of η′ → ηπ+π− Dalitz plot, Phys. Lett. B 651 (2007) 22 [hep-ph/0607044] [INSPIRE].

BESIII collaboration, Measurement of the Matrix Element for the Decay η′ → ηπ+π−, Phys. Rev. D 83 (2011) 012003 [arXiv:1012.1117] [INSPIRE].

S.P. Schneider, Analysis tools for precision studies of hadronic three-body decays and transition form factors, Ph.D. thesis, Bonn University, Bonn, Germany (2012).

T. Isken, B. Kubis, S.P. Schneider and P. Stoffer, Dispersion relations for η′ → ηππ, Eur. Phys. J. C 77 (2017) 489 [arXiv:1705.04339] [INSPIRE].

H. Osborn and D.J. Wallace, η-X mixing, η → 3π and chiral lagrangians, Nucl. Phys. B 20 (1970) 23 [INSPIRE].

J. Kambor, C. Wiesendanger and D. Wyler, Final state interactions and Khuri-Treiman equations in η → 3π decays, Nucl. Phys. B 465 (1996) 215 [hep-ph/9509374] [INSPIRE].

A.V. Anisovich and H. Leutwyler, Dispersive analysis of the decay η → 3π, Phys. Lett. B 375 (1996) 335 [hep-ph/9601237] [INSPIRE].

J. Bijnens and J. Gasser, Eta decays at and beyond p4 in chiral perturbation theory, Phys. Scripta T 99 (2002) 34 [hep-ph/0202242] [INSPIRE].

B. Borasoy and R. Nißler, Hadronic η and η′ decays, Eur. Phys. J. A 26 (2005) 383 [hep-ph/0510384] [INSPIRE].

J. Bijnens and K. Ghorbani, η → 3π at two loops in chiral perturbation theory, JHEP 11 (2007) 030 [arXiv:0709.0230] [INSPIRE].

B. Barrett, M. Jacob, M. Nauenberg and T.N. Truong, Consequences of C-violating interactions in η0 and X 0 decays, Phys. Rev. 141 (1966) 1342 [INSPIRE].

J. Stern, H. Sazdjian and N.H. Fuchs, What π-π scattering tells us about chiral perturbation theory, Phys. Rev. D 47 (1993) 3814 [hep-ph/9301244] [INSPIRE].

B. Ananthanarayan and P. Büttiker, Comparison of pion kaon scattering in SU(3) chiral perturbation theory and dispersion relations, Eur. Phys. J. C 19 (2001) 517 [hep-ph/0012023] [INSPIRE].

M. Zdráhal and J. Novotný, Dispersive approach to chiral perturbation theory, Phys. Rev. D 78 (2008) 116016 [arXiv:0806.4529] [INSPIRE].

T. Isken, Dispersion-theoretical analysis of ππ and πη rescattering effects in strong three-body decays, Ph.D. thesis, Bonn University, Bonn, Germany (2021).

R. Omnès, On the Solution of certain singular integral equations of quantum field theory, Nuovo Cim. 8 (1958) 316 [INSPIRE].

F. Niecknig, B. Kubis and S.P. Schneider, Dispersive analysis of ω → 3π and ϕ → 3π decays, Eur. Phys. J. C 72 (2012) 2014 [arXiv:1203.2501] [INSPIRE].

F. Niecknig and B. Kubis, Dispersion-theoretical analysis of the D+ → K−π+π+ Dalitz plot, JHEP 10 (2015) 142 [arXiv:1509.03188] [INSPIRE].

F. Niecknig and B. Kubis, Consistent Dalitz plot analysis of Cabibbo-favored D+ → $$ \overline{K} $$ππ+ decays, Phys. Lett. B 780 (2018) 471 [arXiv:1708.00446] [INSPIRE].

G. Colangelo, J. Gasser and H. Leutwyler, ππ scattering, Nucl. Phys. B 603 (2001) 125 [hep-ph/0103088] [INSPIRE].

I. Caprini, G. Colangelo and H. Leutwyler, Regge analysis of the ππ scattering amplitude, Eur. Phys. J. C 72 (2012) 1860 [arXiv:1111.7160] [INSPIRE].

M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev. 123 (1961) 1053 [INSPIRE].

A2 collaboration, High-statistics measurement of the η → 3π0 decay at the Mainz Microtron, Phys. Rev. C 97 (2018) 065203 [arXiv:1803.02502] [INSPIRE].

M. Bashkanov et al., Measurement of the slope parameter for the η → 3π0 decay in the pp → ppη reaction, Phys. Rev. C 76 (2007) 048201 [arXiv:0708.2014] [INSPIRE].

WASA-at-COSY collaboration, Measurement of the η → 3π0 Dalitz plot distribution with the WASA detector at COSY, Phys. Lett. B 677 (2009) 24 [arXiv:0811.2763] [INSPIRE].

Crystal Ball at MAMI, A2 collaboration, Measurement of the slope parameter α for the η → 3π0 decay with the Crystal Ball at MAMI-C, Phys. Rev. C 79 (2009) 035204 [arXiv:0812.1999] [INSPIRE].

Crystal Ball at MAMI, TAPS, A2 collaboration, Determination of the Dalitz plot parameter α for the decay η → 3π0 with the Crystal Ball at MAMI-B, Eur. Phys. J. A 39 (2009) 169 [arXiv:0812.3324] [INSPIRE].

KLOE collaboration, Measurement of the η → 3π0 slope parameter α with the KLOE detector, Phys. Lett. B 694 (2011) 16 [arXiv:1004.1319] [INSPIRE].

Particle Data Group collaboration, Review of particle physics, PTEP 2020 (2020) 083C01 [INSPIRE].

BESIII collaboration, Observation of the isospin-violating decay J/ψ → ϕπ0f0(980), Phys. Rev. D 92 (2015) 012007 [arXiv:1505.06283] [INSPIRE].

BESIII collaboration, Amplitude Analysis of the Decays η′ → π+π−π0 and η′ → π0π0π0, Phys. Rev. Lett. 118 (2017) 012001 [arXiv:1606.03847] [INSPIRE].

T. Isken, B. Kubis, A. Kupść and P. Stoffer, Strong three-body decays of η and η′ mesons, to be published.

V. Bernard, N. Kaiser and U.-G. Meißner, πη scattering in QCD, Phys. Rev. D 44 (1991) 3698 [INSPIRE].

M. Albaladejo and B. Moussallam, Form factors of the isovector scalar current and the ηπ scattering phase shifts, Eur. Phys. J. C 75 (2015) 488 [arXiv:1507.04526] [INSPIRE].

J. Lu and B. Moussallam, The πη interaction and a0 resonances in photon-photon scattering, Eur. Phys. J. C 80 (2020) 436 [arXiv:2002.04441] [INSPIRE].

A.M. Blik et al., Measurement of the matrix element for the decay η′ → ηπ0π0 with the GAMS-4pi spectrometer, Phys. Atom. Nucl. 72 (2009) 231 [Yad. Fiz. 72 (2009) 258] [INSPIRE].

A2 collaboration, Measurement of the decay η′ → π0π0η at MAMI, Phys. Rev. D 98 (2018) 012001 [arXiv:1709.04230] [INSPIRE].

B. Kubis and S.P. Schneider, The cusp effect in η′ → ηππ decays, Eur. Phys. J. C 62 (2009) 511 [arXiv:0904.1320] [INSPIRE].

R. Escribano, P. Masjuan and J.J. Sanz-Cillero, Chiral dynamics predictions for η′ → ηππ, JHEP 05 (2011) 094 [arXiv:1011.5884] [INSPIRE].

S. Gonzàlez-Solís and E. Passemar, η′ → ηππ decays in unitarized resonance chiral theory, Eur. Phys. J. C 78 (2018) 758 [arXiv:1807.04313] [INSPIRE].

S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial vector current, Phys. Rev. 137 (1965) B1022 [INSPIRE].

S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial-vector current. II, Phys. Rev. 139 (1965) B1638 [INSPIRE].

Riazuddin and S. Oneda, Some remarks on the (3, 3*) ⊕ (3*, 3) breaking of chiral symmetry, Phys. Rev. Lett. 27 (1971) 548 [INSPIRE].

J. Shi, Theoretical studies of C and CP violation in η → π+π−π0 decay, Ph.D. thesis, Kentucky University, U.S.A. (2020).

L. Gan, Probes for fundamental QCD symmetries and a dark gauge boson via light meson decays, PoS CD15 (2015) 017 [INSPIRE].

REDTOP collaboration, The REDTOP project: rare eta decays with a TPC for optical photons, PoS(ICHEP2016)812 [INSPIRE].

L. Gan, Test fundamental symmetries via precision measurements of π0, η, and η′ decays, JPS Conf. Proc. 13 (2017) 020063 [INSPIRE].

REDTOP collaboration, The REDTOP experiment, arXiv:1910.08505 [INSPIRE].

J. Beacham et al., Physics beyond colliders at CERN: beyond the standard model working group report, J. Phys. G 47 (2020) 010501 [arXiv:1901.09966] [INSPIRE].