Mẫu hình của sự vi phạm C và CP trong sự phân rã ba thân hadronic η và η′
Tóm tắt
Từ khóa
Tài liệu tham khảo
E.M. Purcell and N.F. Ramsey, On the possibility of electric dipole moments for elementary particles and nuclei, Phys. Rev. 78 (1950) 807 [INSPIRE].
M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].
R.J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics, Phys. Lett. B 88 (1979) 123 [Erratum ibid. 91 (1980) 487] [INSPIRE].
A. Pich and E. de Rafael, Strong CP-violation in an effective chiral Lagrangian approach, Nucl. Phys. B 367 (1991) 313 [INSPIRE].
M. Gorchtein, Nucleon EDM and rare decays of eta and eta-prime mesons, arXiv:0803.2906 [INSPIRE].
T. Gutsche et al., CP-violating decays of the pseudoscalars η and η′ and their connection to the electric dipole moment of the neutron, Phys. Rev. D 95 (2017) 036022 [arXiv:1612.02276] [INSPIRE].
A.S. Zhevlakov, M. Gorchtein, A.N. Hiller Blin, T. Gutsche and V.E. Lyubovitskij, Bounds on rare decays of η and η′ mesons from the neutron EDM, Phys. Rev. D 99 (2019) 031703 [arXiv:1812.00171] [INSPIRE].
A.S. Zhevlakov, T. Gutsche and V.E. Lyubovitskij, Updated limits on the CP-violating ηππ and η′ππ couplings derived from the neutron EDM, Phys. Rev. D 99 (2019) 115004 [arXiv:1904.08154] [INSPIRE].
A.S. Zhevlakov and V.E. Lyubovitskij, Deuteron EDM induced by CP violating couplings of pseudoscalar mesons, Phys. Rev. D 101 (2020) 115041 [arXiv:2003.12217] [INSPIRE].
L. Gan, B. Kubis, E. Passemar and S. Tulin, Precision tests of fundamental physics with η and η′ mesons, Phys. Rept. 945 (2022) 2191 [arXiv:2007.00664] [INSPIRE].
I.B. Khriplovich, What do we know about T odd but P even interaction?, Nucl. Phys. B 352 (1991) 385 [INSPIRE].
R.S. Conti and I.B. Khriplovich, New limits on T odd, P even interactions, Phys. Rev. Lett. 68 (1992) 3262 [INSPIRE].
J. Engel, P.H. Frampton and R.P. Springer, Effective Lagrangians and parity conserving time reversal violation at low-energies, Phys. Rev. D 53 (1996) 5112 [nucl-th/9505026] [INSPIRE].
M.J. Ramsey-Musolf, Electric dipole moments and the mass scale of new T violating, P conserving interactions, Phys. Rev. Lett. 83 (1999) 3997 [Erratum ibid. 84 (2000) 5681] [hep-ph/9905429] [INSPIRE].
A. Kurylov, G.C. McLaughlin and M.J. Ramsey-Musolf, Constraints on T odd, P even interactions from electric dipole moments, revisited, Phys. Rev. D 63 (2001) 076007 [hep-ph/0011185] [INSPIRE].
W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].
B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].
H.-L. Li, Z. Ren, J. Shu, M.-L. Xiao, J.-H. Yu and Y.-H. Zheng, Complete set of dimension-eight operators in the standard model effective field theory, Phys. Rev. D 104 (2021) 015026 [arXiv:2005.00008] [INSPIRE].
C.W. Murphy, Dimension-8 operators in the Standard Model Effective Field Theory, JHEP 10 (2020) 174 [arXiv:2005.00059] [INSPIRE].
M. Simonius, On time reversal violation in the nucleon-nucleon system, Phys. Lett. B 58 (1975) 147 [INSPIRE].
S. Gardner and J. Shi, Patterns of CP-violation from mirror symmetry breaking in the η → π+π−π0 Dalitz plot, Phys. Rev. D 101 (2020) 115038 [arXiv:1903.11617] [INSPIRE].
J.G. Layter, J.A. Appel, A. Kotlewski, W.-Y. Lee, S. Stein and J.J. Thaler, Measurement of the charge asymmetry in the decay η → π+π−π0, Phys. Rev. Lett. 29 (1972) 316 [INSPIRE].
T.D. Lee, Possible C-noninvariant effects in the 3π decay modes of η0 and ω0, Phys. Rev. 139 (1965) B1415 [INSPIRE].
KLOE-2 collaboration, Precision measurement of the η → π+π−π0 Dalitz plot distribution with the KLOE detector, JHEP 05 (2016) 019 [arXiv:1601.06985] [INSPIRE].
M. Gormley et al., Experimental test of C invariance in η → π+π − π0, Phys. Rev. Lett. 21 (1968) 402 [INSPIRE].
M. Gormley, E. Hyman, W.-Y. Lee, T. Nash, J. Peoples, C. Schultz et al., Experimental determination of the dalitz-plot distribution of the decays η → π+π−π0 and η → π+π−γ, and the branching ratio η → π+ π−γ/η → π+π−π0, Phys. Rev. D 2 (1970) 501 [INSPIRE].
M.R. Jane et al., A measurement of the charge asymmetry in the decay η → π+π−π0, Phys. Lett. B 48 (1974) 260 [INSPIRE].
KLOE collaboration, Determination of η → π+π−π0 Dalitz plot slopes and asymmetries with the KLOE detector, JHEP 05 (2008) 006 [arXiv:0801.2642] [INSPIRE].
WASA-at-COSY collaboration, Measurement of the η → π+π−π0 Dalitz plot distribution, Phys. Rev. C 90 (2014) 045207 [arXiv:1406.2505] [INSPIRE].
BESIII collaboration, Measurement of the Matrix Elements for the Decays η → π+π−π0 and η/η′ → π0π0π0, Phys. Rev. D 92 (2015) 012014 [arXiv:1506.05360] [INSPIRE].
J.H. Christenson, J.W. Cronin, V.L. Fitch and R. Turlay, Evidence for the 2π Decay of the $$ {K}_2^0 $$ Meson, Phys. Rev. Lett. 13 (1964) 138 [INSPIRE].
T.D. Lee and L. Wolfenstein, Analysis of CP noninvariant interactions and the $$ {K}_1^0 $$, $$ {K}_2^0 $$ system, Phys. Rev. 138 (1965) B1490 [INSPIRE].
J. Prentki and M.J.G. Veltman, Possibility of CP-violation in semistrong interactions, Phys. Lett. 15 (1965) 88 [INSPIRE].
C. Ditsche, B. Kubis and U.-G. Meißner, Electromagnetic corrections in η → 3π decays, Eur. Phys. J. C 60 (2009) 83 [arXiv:0812.0344] [INSPIRE].
S.P. Schneider, B. Kubis and C. Ditsche, Rescattering effects in η → 3π decays, JHEP 02 (2011) 028 [arXiv:1010.3946] [INSPIRE].
N.N. Khuri and S.B. Treiman, Pion-pion scattering and K± → 3π decay, Phys. Rev. 119 (1960) 1115 [INSPIRE].
R. Baur, J. Kambor and D. Wyler, Electromagnetic corrections to the decays η → 3π, Nucl. Phys. B 460 (1996) 127 [hep-ph/9510396] [INSPIRE].
K. Kampf, M. Knecht, J. Novotný and M. Zdráhal, Analytical dispersive construction of η → 3π amplitude: first order in isospin breaking, Phys. Rev. D 84 (2011) 114015 [arXiv:1103.0982] [INSPIRE].
P. Guo, I.V. Danilkin, D. Schott, C. Fernández-Ramírez, V. Mathieu and A.P. Szczepaniak, Three-body final state interaction in η → 3π, Phys. Rev. D 92 (2015) 054016 [arXiv:1505.01715] [INSPIRE].
P. Guo, I.V. Danilkin, C. Fernández-Ramírez, V. Mathieu and A.P. Szczepaniak, Three-body final state interaction in η → 3π updated, Phys. Lett. B 771 (2017) 497 [arXiv:1608.01447] [INSPIRE].
G. Colangelo, S. Lanz, H. Leutwyler and E. Passemar, η → 3π: study of the Dalitz plot and extraction of the quark mass ratio Q, Phys. Rev. Lett. 118 (2017) 022001 [arXiv:1610.03494] [INSPIRE].
M. Albaladejo and B. Moussallam, Extended chiral Khuri-Treiman formalism for η → 3π and the role of the a0(980), f0(980) resonances, Eur. Phys. J. C 77 (2017) 508 [arXiv:1702.04931] [INSPIRE].
G. Colangelo, S. Lanz, H. Leutwyler and E. Passemar, Dispersive analysis of η → 3π, Eur. Phys. J. C 78 (2018) 947 [arXiv:1807.11937] [INSPIRE].
K. Kampf, M. Knecht, J. Novotný and M. Zdráhal, Dispersive construction of two-loop P → πππ (P = K, η) amplitudes, Phys. Rev. D 101 (2020) 074043 [arXiv:1911.11762] [INSPIRE].
BESIII collaboration, Measurement of the matrix elements for the decays η′ → ηπ+π− and η′ → ηπ0π0, Phys. Rev. D 97 (2018) 012003 [arXiv:1709.04627] [INSPIRE].
V. Dorofeev et al., Study of η′ → ηπ+π− Dalitz plot, Phys. Lett. B 651 (2007) 22 [hep-ph/0607044] [INSPIRE].
BESIII collaboration, Measurement of the Matrix Element for the Decay η′ → ηπ+π−, Phys. Rev. D 83 (2011) 012003 [arXiv:1012.1117] [INSPIRE].
S.P. Schneider, Analysis tools for precision studies of hadronic three-body decays and transition form factors, Ph.D. thesis, Bonn University, Bonn, Germany (2012).
T. Isken, B. Kubis, S.P. Schneider and P. Stoffer, Dispersion relations for η′ → ηππ, Eur. Phys. J. C 77 (2017) 489 [arXiv:1705.04339] [INSPIRE].
H. Osborn and D.J. Wallace, η-X mixing, η → 3π and chiral lagrangians, Nucl. Phys. B 20 (1970) 23 [INSPIRE].
J. Kambor, C. Wiesendanger and D. Wyler, Final state interactions and Khuri-Treiman equations in η → 3π decays, Nucl. Phys. B 465 (1996) 215 [hep-ph/9509374] [INSPIRE].
A.V. Anisovich and H. Leutwyler, Dispersive analysis of the decay η → 3π, Phys. Lett. B 375 (1996) 335 [hep-ph/9601237] [INSPIRE].
J. Bijnens and J. Gasser, Eta decays at and beyond p4 in chiral perturbation theory, Phys. Scripta T 99 (2002) 34 [hep-ph/0202242] [INSPIRE].
B. Borasoy and R. Nißler, Hadronic η and η′ decays, Eur. Phys. J. A 26 (2005) 383 [hep-ph/0510384] [INSPIRE].
J. Bijnens and K. Ghorbani, η → 3π at two loops in chiral perturbation theory, JHEP 11 (2007) 030 [arXiv:0709.0230] [INSPIRE].
B. Barrett, M. Jacob, M. Nauenberg and T.N. Truong, Consequences of C-violating interactions in η0 and X 0 decays, Phys. Rev. 141 (1966) 1342 [INSPIRE].
J. Stern, H. Sazdjian and N.H. Fuchs, What π-π scattering tells us about chiral perturbation theory, Phys. Rev. D 47 (1993) 3814 [hep-ph/9301244] [INSPIRE].
B. Ananthanarayan and P. Büttiker, Comparison of pion kaon scattering in SU(3) chiral perturbation theory and dispersion relations, Eur. Phys. J. C 19 (2001) 517 [hep-ph/0012023] [INSPIRE].
M. Zdráhal and J. Novotný, Dispersive approach to chiral perturbation theory, Phys. Rev. D 78 (2008) 116016 [arXiv:0806.4529] [INSPIRE].
T. Isken, Dispersion-theoretical analysis of ππ and πη rescattering effects in strong three-body decays, Ph.D. thesis, Bonn University, Bonn, Germany (2021).
R. Omnès, On the Solution of certain singular integral equations of quantum field theory, Nuovo Cim. 8 (1958) 316 [INSPIRE].
F. Niecknig, B. Kubis and S.P. Schneider, Dispersive analysis of ω → 3π and ϕ → 3π decays, Eur. Phys. J. C 72 (2012) 2014 [arXiv:1203.2501] [INSPIRE].
F. Niecknig and B. Kubis, Dispersion-theoretical analysis of the D+ → K−π+π+ Dalitz plot, JHEP 10 (2015) 142 [arXiv:1509.03188] [INSPIRE].
F. Niecknig and B. Kubis, Consistent Dalitz plot analysis of Cabibbo-favored D+ → $$ \overline{K} $$ππ+ decays, Phys. Lett. B 780 (2018) 471 [arXiv:1708.00446] [INSPIRE].
G. Colangelo, J. Gasser and H. Leutwyler, ππ scattering, Nucl. Phys. B 603 (2001) 125 [hep-ph/0103088] [INSPIRE].
I. Caprini, G. Colangelo and H. Leutwyler, Regge analysis of the ππ scattering amplitude, Eur. Phys. J. C 72 (2012) 1860 [arXiv:1111.7160] [INSPIRE].
M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev. 123 (1961) 1053 [INSPIRE].
A2 collaboration, High-statistics measurement of the η → 3π0 decay at the Mainz Microtron, Phys. Rev. C 97 (2018) 065203 [arXiv:1803.02502] [INSPIRE].
M. Bashkanov et al., Measurement of the slope parameter for the η → 3π0 decay in the pp → ppη reaction, Phys. Rev. C 76 (2007) 048201 [arXiv:0708.2014] [INSPIRE].
WASA-at-COSY collaboration, Measurement of the η → 3π0 Dalitz plot distribution with the WASA detector at COSY, Phys. Lett. B 677 (2009) 24 [arXiv:0811.2763] [INSPIRE].
Crystal Ball at MAMI, A2 collaboration, Measurement of the slope parameter α for the η → 3π0 decay with the Crystal Ball at MAMI-C, Phys. Rev. C 79 (2009) 035204 [arXiv:0812.1999] [INSPIRE].
Crystal Ball at MAMI, TAPS, A2 collaboration, Determination of the Dalitz plot parameter α for the decay η → 3π0 with the Crystal Ball at MAMI-B, Eur. Phys. J. A 39 (2009) 169 [arXiv:0812.3324] [INSPIRE].
KLOE collaboration, Measurement of the η → 3π0 slope parameter α with the KLOE detector, Phys. Lett. B 694 (2011) 16 [arXiv:1004.1319] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, PTEP 2020 (2020) 083C01 [INSPIRE].
BESIII collaboration, Observation of the isospin-violating decay J/ψ → ϕπ0f0(980), Phys. Rev. D 92 (2015) 012007 [arXiv:1505.06283] [INSPIRE].
BESIII collaboration, Amplitude Analysis of the Decays η′ → π+π−π0 and η′ → π0π0π0, Phys. Rev. Lett. 118 (2017) 012001 [arXiv:1606.03847] [INSPIRE].
T. Isken, B. Kubis, A. Kupść and P. Stoffer, Strong three-body decays of η and η′ mesons, to be published.
V. Bernard, N. Kaiser and U.-G. Meißner, πη scattering in QCD, Phys. Rev. D 44 (1991) 3698 [INSPIRE].
M. Albaladejo and B. Moussallam, Form factors of the isovector scalar current and the ηπ scattering phase shifts, Eur. Phys. J. C 75 (2015) 488 [arXiv:1507.04526] [INSPIRE].
J. Lu and B. Moussallam, The πη interaction and a0 resonances in photon-photon scattering, Eur. Phys. J. C 80 (2020) 436 [arXiv:2002.04441] [INSPIRE].
A.M. Blik et al., Measurement of the matrix element for the decay η′ → ηπ0π0 with the GAMS-4pi spectrometer, Phys. Atom. Nucl. 72 (2009) 231 [Yad. Fiz. 72 (2009) 258] [INSPIRE].
A2 collaboration, Measurement of the decay η′ → π0π0η at MAMI, Phys. Rev. D 98 (2018) 012001 [arXiv:1709.04230] [INSPIRE].
B. Kubis and S.P. Schneider, The cusp effect in η′ → ηππ decays, Eur. Phys. J. C 62 (2009) 511 [arXiv:0904.1320] [INSPIRE].
R. Escribano, P. Masjuan and J.J. Sanz-Cillero, Chiral dynamics predictions for η′ → ηππ, JHEP 05 (2011) 094 [arXiv:1011.5884] [INSPIRE].
S. Gonzàlez-Solís and E. Passemar, η′ → ηππ decays in unitarized resonance chiral theory, Eur. Phys. J. C 78 (2018) 758 [arXiv:1807.04313] [INSPIRE].
S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial vector current, Phys. Rev. 137 (1965) B1022 [INSPIRE].
S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial-vector current. II, Phys. Rev. 139 (1965) B1638 [INSPIRE].
Riazuddin and S. Oneda, Some remarks on the (3, 3*) ⊕ (3*, 3) breaking of chiral symmetry, Phys. Rev. Lett. 27 (1971) 548 [INSPIRE].
J. Shi, Theoretical studies of C and CP violation in η → π+π−π0 decay, Ph.D. thesis, Kentucky University, U.S.A. (2020).
L. Gan, Probes for fundamental QCD symmetries and a dark gauge boson via light meson decays, PoS CD15 (2015) 017 [INSPIRE].
REDTOP collaboration, The REDTOP project: rare eta decays with a TPC for optical photons, PoS(ICHEP2016)812 [INSPIRE].
L. Gan, Test fundamental symmetries via precision measurements of π0, η, and η′ decays, JPS Conf. Proc. 13 (2017) 020063 [INSPIRE].
REDTOP collaboration, The REDTOP experiment, arXiv:1910.08505 [INSPIRE].
J. Beacham et al., Physics beyond colliders at CERN: beyond the standard model working group report, J. Phys. G 47 (2020) 010501 [arXiv:1901.09966] [INSPIRE].