Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô hình khuếch tán công nghệ trong việc áp dụng liệu pháp nhiệt nội sọ bằng laser định vị (LITT) trong điều trị thần kinh ung thư
Tóm tắt
Việc hiểu các yếu tố ảnh hưởng đến sự khuếch tán công nghệ là trung tâm của quá trình chuyển giao lâm sàng các liệu pháp mới. Chúng tôi đã mô tả mô hình áp dụng liệu pháp nhiệt nội sọ bằng laser (LITT), còn được gọi là sự phá hủy bằng laser định vị (SLA), trong lĩnh vực thần kinh ung thư sử dụng cơ sở dữ liệu Mẫu Bệnh nhân Nội trú Quốc gia (NIS). Chúng tôi xác định các bệnh nhân từ 18 tuổi trở lên trong NIS (2012–2018) có chẩn đoán ung thư não nguyên phát hoặc di căn và đã trải qua LITT hoặc mổ hộp sọ. Chúng tôi so sánh các đặc điểm và kết quả cho các bệnh nhân đã trải qua những thủ tục này. Việc sử dụng LITT đã tăng khoảng 400% so với mổ hộp sọ trong thời gian nghiên cứu. Mặc dù có sự gia tăng này, tổng số thủ tục LITT được thực hiện cho ung thư não vẫn chưa đạt 1% so với mổ hộp sọ. Sau khi điều chỉnh theo xu hướng thời gian, các bệnh nhân LITT có ít khả năng bị hơn 2 bệnh đi kèm (OR 0.64, CI95 0.51–0.79) hoặc lớn tuổi hơn (OR 0.92, CI95 0.86–0.99) và có nhiều khả năng là nữ giới (OR 1.35, CI95 1.08–1.69), người da trắng so với người da đen (OR 1.94, CI95 1.12–3.36), và được bảo hiểm tư nhân so với Medicare hoặc Medicaid (OR 1.38, CI95 1.09–1.74). Thời gian nằm viện của bệnh nhân LITT ngắn hơn 50% so với mổ hộp sọ (IRR 0.52, CI95 0.45–0.61). Tuy nhiên, các khoản phí liên quan đến các thủ tục này có sự tương đương giữa LITT và mổ hộp sọ (tăng $1397 cho LITT, CI95 $−5790 đến $8584). Đối với các chỉ định trong thần kinh ung thư, việc sử dụng LITT đã tăng khoảng 400% so với mổ hộp sọ. So với các bệnh nhân được điều trị bằng mổ hộp sọ, bệnh nhân được điều trị bằng LITT có nhiều khả năng trẻ tuổi, nữ, không phải người da đen, được bảo hiểm tư nhân hoặc có dưới 2 bệnh đi kèm. Trong khi tổng chi phí bệnh viện tương đương, LITT lại liên quan đến thời gian nằm viện ngắn hơn so với mổ hộp sọ.
Từ khóa
#LITT #liệu pháp nhiệt nội sọ #thần kinh ung thư #chuyển giao lâm sàng #khuếch tán công nghệTài liệu tham khảo
Marcus HJ, Hughes-Hallett A, Kwasnicki RM et al (2015) Technological innovation in neurosurgery: a quantitative study. J Neurosurg 123:174–181
Kamat AS, Parker A (2013) The evolution of neurosurgery: how has our practice changed? Br J Neurosurg 27:747–751
Rosomoff HL, Carroll F (1966) Reaction of neoplasm and brain to laser. Arch Neurol 14:143–148
Rogers EM (2010) Diffusion of innovations, 4th edn. Simon and Schuster, New York
Missios S, Bekelis K, Barnett GH (2015) Renaissance of laser interstitial thermal ablation. Neurosurg Focus 38:E13
Jethwa PR, Barrese JC, Gowda A et al (2012) Magnetic resonance thermometry-guided laser-induced thermal therapy for intracranial neoplasms: initial experience. Neurosurgery 71(133–44):144–145
Elder JB, Huntoon K, Otero J et al (2019) Histologic findings associated with laser interstitial thermotherapy for glioblastoma multiforme. Diagn Pathol 14:19
Shah AH, Burks JD, Buttrick SS et al (2019) Laser interstitial thermal therapy as a primary treatment for deep inaccessible gliomas. Neurosurgery 84:768–777
Marenco-Hillembrand L, Alvarado-Estrada K, Chaichana KL (2018) Contemporary surgical management of deep-seated metastatic brain tumors using minimally invasive approaches. Front Oncol 8:558
Shin DH, Melnick KF, Tran DD, Ghiaseddin AP (2020) In situ vaccination with laser interstitial thermal therapy augments immunotherapy in malignant gliomas. J Neurooncol. https://doi.org/10.1007/s11060-020-03557-x
Sabel M, Rommel F, Kondakci M et al (2003) Locoregional opening of the rodent blood-brain barrier for paclitaxel using Nd:YAG laser-induced thermo therapy: a new concept of adjuvant glioma therapy? Lasers Surg Med 33:75–80
Leuthardt EC, Duan C, Kim MJ et al (2016) Hyperthermic laser ablation of recurrent glioblastoma leads to temporary disruption of the peritumoral blood brain barrier. PLoS ONE 11:
Hong CS, Deng D, Vera A, Chiang VL (2019) Laser-interstitial thermal therapy compared to craniotomy for treatment of radiation necrosis or recurrent tumor in brain metastases failing radiosurgery. J Neurooncol 142:309–317
Barnett GH, Voigt JD, Alhuwalia MS (2016) A systematic review and meta-analysis of studies examining the use of brain laser interstitial thermal therapy versus craniotomy for the treatment of high-grade tumors in or near areas of eloquence: an examination of the extent of resection and major complication rates associated with each type of surgery. Stereotact Funct Neurosurg 94:164–173
Healthcare Cost and Utilization Project (HCUP) (2012) HCUP National Inpatient Sample (NIS)
Centers for Medicare & Medicaid Services (CMS) (2009) Medicare contractor annual update of the international classification of diseases, ninth revision, clinical modification (ICD-9-CM)
Elixhauser A, Steiner C, Harris DR, Coffey RM (1998) Comorbidity measures for use with administrative data. Med Care 36:8–27
Zacharia BE, Deibert C, Gupta G et al (2014) Incidence, cost, and mortality associated with hospital-acquired conditions after resection of cranial neoplasms. Neurosurgery 74:638–647
Jarvis CA, Bakhsheshian J, Ding L et al (2019) Increased complication and mortality among non-index hospital readmissions after brain tumor resection is associated with low-volume readmitting hospitals. J Neurosurg 1–13
Wen T, Attenello FJ, He S et al (2014) Racial and socioeconomic disparities in incidence of hospital-acquired complications following cerebrovascular procedures. Neurosurgery 75:43–50
CDC (2013) FY 2013, FY 2014, and FY 2015 final HAC list. In: Centers for Medicare and Medicaid Services. https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/HospitalAcqCond/Downloads/FY_2013_Final_HACsCodeList.pdf
ICD-10 HAC List. In: Centers for Medicare and Medicaid Services. https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/HospitalAcqCond/icd10_hacs. Accessed 21 Oct 2020
SAS Institute Inc (2013) SAS/ACCESS® 9.4 Interface to ADABAS: Reference. SAS Institute Inc, Cary, NC
R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Lumley T (2010) Complex surveys: a guide to analysis using R. John Wiley, Hoboken, NJ
Shah AH, Semonche A, Eichberg DG et al (2020) The role of laser interstitial thermal therapy in surgical neuro-oncology: series of 100 consecutive patients. Neurosurgery 87:266–275
Lee I, Kalkanis S, Hadjipanayis CG (2016) Stereotactic laser interstitial thermal therapy for recurrent high-grade gliomas. Neurosurgery 79(Suppl 1):S24–S34
Hawasli AH, Kim AH, Dunn GP et al (2014) Stereotactic laser ablation of high-grade gliomas. Neurosurg Focus 37:E1
October 2020: CPT® Editorial Summary of Panel Actions | AMA. In: American Medical Association. https://www.ama-assn.org/system/files/2020-11/october-2020-summary-panel-actions.pdf
Ayanian JZ, Cleary PD, Weissman JS, Epstein AM (1999) The effect of patients’ preferences on racial differences in access to renal transplantation. N Engl J Med 341:1661–1669
Schulman KA, Berlin JA, Harless W et al (1999) The effect of race and sex on physicians’ recommendations for cardiac catheterization. N Engl J Med 340:618–626
Hofacker SA, Dupre ME, Vellano K et al (2020) Association between patient race and staff resuscitation efforts after cardiac arrest in outpatient dialysis clinics: a study from the CARES surveillance group. Resuscitation 156:42–50
Epstein AM, Ayanian JZ, Keogh JH et al (2000) Racial disparities in access to renal transplantation–clinically appropriate or due to underuse or overuse? N Engl J Med 343:1537–1544
Nathan CL, Gutierrez C (2018) FACETS of health disparities in epilepsy surgery and gaps that need to be addressed. Neurol Clin Pract 8:340–345
Morrison RS, Wallenstein S, Natale DK et al (2000) “We don’t carry that”–failure of pharmacies in predominantly nonwhite neighborhoods to stock opioid analgesics. N Engl J Med 342:1023–1026
Bisgaier J, Rhodes KV (2011) Auditing access to specialty care for children with public insurance. N Engl J Med 364:2324–2333
Bhattacharya J, Goldman D, Sood N (2003) The link between public and private insurance and HIV-related mortality. J Health Econ 22:1105–1122
Aetna (2019) Interstitial laser therapy. In: Clinical policy bulletins. http://www.aetna.com/cpb/medical/data/700_799/0781.html. Accessed 26 Oct 2020
UnitedHealthcare (2020) Laser interstitial thermal therapy. In: UnitedHealthcare. https://www.uhcprovider.com/content/dam/provider/docs/public/policies/comm-medical-drug/laser-interstitial-thermal-therapy.pdf
Medical coverage policy for LITT. In: Cigna. https://static.cigna.com/assets/chcp/pdf/coveragePolicies/medical/mm_0528_coveragepositioncriteria_laser_interstitial_thermal_therapy.pdf
Schneider MA, Gero D, Müller M et al (2020) Inequalities in access to minimally invasive general surgery: a comprehensive nationwide analysis across 20 years. Surg Endosc. https://doi.org/10.1007/s00464-020-08123-0
Sharma M, Ball T, Alhourani A et al (2020) Inverse national trends of laser interstitial thermal therapy and open surgical procedures for refractory epilepsy: a Nationwide Inpatient Sample-based propensity score matching analysis. Neurosurg Focus 48:E11
Voigt JD, Barnett G (2016) The value of using a brain laser interstitial thermal therapy (LITT) system in patients presenting with high grade gliomas where maximal safe resection may not be feasible. Cost Eff Resour Alloc 14:6
Dhawan S, Bartek J Jr, Chen CC (2020) Cost-effectiveness of stereotactic laser ablation (SLA) for brain tumors. Int J Hyperthermia 37:61–67
Kamath AA, Friedman DD, Akbari SHA et al (2019) Glioblastoma treated with magnetic resonance imaging-guided laser interstitial thermal therapy: safety, efficacy, and outcomes. Neurosurgery 84:836–843
Rammo R, Asmaro K, Schultz L et al (2018) The safety of magnetic resonance imaging-guided laser interstitial thermal therapy for cerebral radiation necrosis. J Neurooncol 138:609–617
Ginalis EE, Danish SF (2020) Magnetic resonance-guided laser interstitial thermal therapy for brain tumors in geriatric patients. Neurosurg Focus 49:E12
Alattar AA, Bartek J Jr, Chiang VL et al (2019) Stereotactic laser ablation as treatment of brain metastases recurring after stereotactic radiosurgery: a systematic literature review. World Neurosurg 128:134–142
Rennert RC, Khan U, Bartek J et al (2020) Laser ablation of abnormal neurological tissue using robotic neuroblate system (LAANTERN): procedural safety and hospitalization. Neurosurgery 86:538–547