Pattern generation and compliant feedback control for quadrupedal dynamic trot-walking locomotion: experiments on RoboCat-1 and HyQ

Autonomous Robots - Tập 38 Số 4 - Trang 415-437 - 2015
Barkan Uğurlu1, Ioannis Havoutis2, Claudio Semini2, Kana Kayamori3, Darwin G. Caldwell2, Tatsuo Narikiyo3
1Department of Mechanical Engineering , Ozyegin University, Istanbul , Turkey 34794
2Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Genoa, Italy 16163#TAB#
3Department of Advanced Science and Technology, Toyota Technological Institute, Nagoya, Japan, 468-8511

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barasuol, V., Buchli, J., Semini, C., Frigero, M., De Pieri, E. R., & Caldwell, D. G. (2013). A reactive controller framework for quadrupedal locomotion on challenging terrain. In IEEE International conference on robotics and automation (ICRA), Karlsruhe, Germany (pp. 2539–2546).

Bazeille, S., Barasuol, V., Focchi, M., Havoutis, I., Frigerio, M., Buchli, J., et al. (2014). Quadruped robot trotting over irregular terrain assisted by stereo-vision. Journal of Intelligent Service Robotics, 7(2), 67–77.

Boaventura, T., Medrano-Cerda, G. A., Semini, C., Buchli, J., & Caldwell, D. G. (2013). Stability and performance of the compliance controller of the quadruped robot HyQ. In IEEE international conference on intelligent robots and systems (IROS), Tokyo, Japan (pp. 1458–1464).

Boaventura, T., Semini, C., Buchli, J., Frigero, M., Focchi, M., & Caldwell, D. G. (2012). Dynamic torque control of a hydraulic quadruped robot. In IEEE international conference on robotics and automation (ICRA), St. Paul, US (pp. 1889–1894).

Buschmann, T., Lohmeier, S., & Ulbrich, H. (2009). Biped walking control based on hybrid position/force control. In IEEE international conference on intelligent robots and systems (IROS), St. Louis, US (pp. 3019–3024).

Byl, K., Shkolnik, A., Prentice, S., Roy, N., & Tedrake, R. (2009). Reliable dynamic motions for a stiff quadruped. Springer Tracks in Advanced Robotics, 54, 319–328.

Colgate, E., & Hogan, N. (1989). An analysis of contact instability in terms of passive physical equivalents. In IEEE international conference on robotics and automation (ICRA), Scottsdale, US (pp. 404–409).

Colgate, J. E. (1994). Coupled stability of multiport systems—theory and experiments. Transactions on ASME, Journal of Dynamic Systems, Measurement, and Control, 116(3), 419–428.

Fasse, E. (1987). Stability robustness of impedance controlled manipulators coupled to passive environments. Massachusetts Institute of Technology: Master’s Dissertation.

Ferris, D. P., Louie, M., & Farley, C. T. (1998). Running in the real world: Adjusting leg stiffness for different surfaces. Royal Society London, 265, 989–993.

Focchi, M., Barasuol, V., Havoutis, I., Buchli, J., Semini, C., & Caldwell, D. G. (2013). Local reflex generation for obstacle negotiation in quadrupedal locomotion. In International conference on climbing and walking robots (CLAWAR), Sydney, Australia (pp. 1–8).

Fujimoto, Y., Obata, S., & Kawamura, A. (1998). Robust bipedal walking with active interaction control between foot and ground. In IEEE international conference on robotics and automation (ICRA), Leuven, Belgium (pp. 2030–2035).

Galloway, K. C., Clark, J. E., & Koditschek, D. E. (2013). Variable stiffness legs for robust, efficient, and stable dynamic running. ASME Journal of Mechanisms and Robotics, 5(1), 677–688.

Havoutis, I., Ortiz, J., Bazeille, S., Barasuol, V., Semini C., & Caldwell, D.G. (2013). Onboard perception-based trotting and crawling with the hydraulic quadruped robot (HyQ). In IEEE international conference on intelligent robots and systems (IROS), Tokyo, Japan (pp. 6052–6057).

Hutter, M., Remy, C. D., Hoepflinger, M. A., & Siegwart, R. (2013). Efficient and versatile locomotion with highly compliant legs. IEEE Transactions on Mechatronics, 18(2), 449–458.

Hyon, S.-H. (2009). Compliant terrain adaptation for biped humanoids without measuring ground surface and contact forces. IEEE Transactions on Robotics, 25(1), 677–688.

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003). Biped walking pattern generation by using preview control of zero-moment point. In IEEE international conference on robotics and automation (ICRA), Taipei, Taiwan (pp. 1620–1626).

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., & Schaal, S. (2011). Learning, planning and control for quadruped locomotion over challenging terrain. International Journal of Robotics Research, 30(2), 236–258.

Kim, Y.-D., Lee, B.-J., Ryu, J.-H., & Kim, J.-H. (2007). Landing force control for humanoid robot by time-domain passivity approach. IEEE Transactions on Robotics, 23(6), 1294–1301.

Kimura, H., Fukuoka, Y., & Cohen, A. H. (2007). Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. International Journal of Robotics Research, 26(5), 475–490.

Koolen, T., de Boer, T., Rebula, J. R., Goswami, A., & Pratt, J. E. (2012). Capturability-based analysis and control of legged locomotion, part 1: Theory and application to three simple gait models. International Journal of Robotics Research, 31(9), 1094–1113.

Kurazume, R., Yoneda, K., & Hirose, S. (2002). Feedforward and feedback dynamic trot gait control for quadruped walking vehicle. Autonomous Robots, 12(2), 157–172.

Maufroy, C., Kimura, H., & Takase, K. (2010). Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/unloading. Autonomous Robots, 28(3), 331–353.

Morimoto, J., Endo, G., Nakanishi, J., & Cheng, G. (2008). A biologically inspired biped locomotion strategy for humanoid robots: Modulation of sinusoidal patterns by a coupled oscillator model. IEEE Transactions on Robotics, 24(1), 185–191.

Moro, F. L., Sproewitz, A., Tuleu, A., Vespignani, M., Tsagarakis, N. G., Ijspeert, A. J., et al. (2013). Horse-like walking, trotting, and galloping derived from kinematic motion primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot. Biological Cybernetics, 107(3), 309–320.

Murakami, T., Yu, F., & Ohnishi, K. (1993). Torque sensorless control in multidegree-of-freedom manipulator. IEEE Transactions on Industrial Electronics, 40(2), 259–265.

Ott, C., Roa, M. A., & Hirzinger, G. (2011). Posture and balance control for biped robots based on contact force optimization. In IEEE international conference on humanoid robots (humanoids), Bled, Slovenia (pp. 26–32).

Raibert, M., Blankespoor, K., Nelson, G., Playtor, R., & the Big-Dog Team (2008). BigDog, the rough-terrain quadruped robot. In The 17th world cong. The international federation automatic control, Seoul, Korea (pp. 10822–10825).

Righetti, L., & Ijspeert, A. J. (2008). Pattern generators with sensory feedback for the control of quadruped locomotion. In IEEE international conference on robotics and automation (ICRA), Pasadena, US (pp. 819–824).

Rutishauser, S., Sproewitz, A., Righetti, L., & Ijspeert, A. J. (2008). Passive compliant quadruped robot using central pattern generators for locomotion control. In IEEE international conference on biomedical robotics and biomechatronics (BioRob), Scottsdale, US (pp. 710–715).

Sangok, S., Wang, A., Chuah, M. Y., Otten, D., Lang, J., & Kim S. (2013). Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot. In Proceedings of the IEEE conference on robotics and automation Karlsruhe, Germany (pp. 3292–3297).

Semini, C., Barasuol, V., Boaventura, T., Frigerio, M., & Buchli, J. (2013). Is active impedance the key to a breakthrough for legged robots? In IEEE international symposium on robotics research (ISRR), Singapore (pp. 1–16).

Semini, C., Tsagarakis, N. G., Guglielmino, E., Focchi, M., Cannella, F., & Caldwell, D. G. (2011). Design of HyQ—A hydraulically and electrically actuated quadruped robot. Institute of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225(6), 831–849.

Sproewitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., & Ijspeert, A. J. (2011). Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot. International Journal of Robotics Research, 32(8), 932–950.

Sugihara, T., & Nakamura, Y. (2009). Boundary condition relaxation method for stepwise pedipulation planning of biped robots. IEEE Transactions on Robotics, 25(3), 658–669.

Ugurlu, B., Havoutis, I., Semini, C., & Caldwell, D. G. (2013). Dynamic trot-walking with the hydraulic quadruped robot—HyQ: Analytical trajectory generation and active compliance control. In IEEE international conference on intelligent robots and systems (IROS), Tokyo, Japan (pp. 6044–6051).

Ugurlu, B., Kotaka, K., & Narikiyo, T. (2013). Actively compliant locomotion control on rough terrain: Cyclic jumping and trotting experiments on a stiff-by-nature quadruped. In IEEE international conference on robotics and automation (ICRA), Karlsruhe, Germany (pp. 3298–3305).

Ugurlu, B., Saglia, J. A., Tsagarakis, N. G., Morfey, S., & Caldwell, D. G. (2014). Bipedal hopping pattern generation for passively compliant humanoids: Exploiting the resonance. IEEE Transactions on Industrial Electronics, 61(10), 5431–5443.

Winkler, A., Havoutis, I., Bazeille, S., Ortiz, J., Focchi, M., Dillmann, R., Caldwell, D. G., & Semini, C. (2014). Path planning with force-based foothold adaptation and virtual model control for torque controlled quadruped robots. In IEEE international conference on robotics and automation (ICRA), Hong Kong (pp. 6476–6482).

Yamada, Y., Nishikawa, S., Shida, K., Niiyama, R., & Kuniyoshi Y. (2011). Neural-body coupling for emergent locomotion: A musculoskeletal quadruped robot with spinobulbar model. In IEEE international conference on intelligent robots and systems (IROS), San Francisco, US (pp. 1499–1506).

Yoneda, K., Iiyama, H., & Hirose, S. (1996). Intermittent trot gait of a quadruped walking machine dynamic stability control of an omnidirectional walk. In IEEE international conference on robotics and automation (ICRA), Minnesota, US (pp. 3002–3007).

Zheng, Y.-F., & Hemami, H. (1985). Mathematical modeling of a robot collision with its environment. Journal of Robotic Systems, 2(3), 289–307.