Ước lượng liều bức xạ cho cơ quan bệnh nhân và liều hiệu quả trong CT: so sánh bốn ứng dụng phần mềm

Springer Science and Business Media LLC - Tập 4 - Trang 1-16 - 2020
Cristina De Mattia1, Federica Campanaro1, Federica Rottoli1, Paola Enrica Colombo1, Andrea Pola2, Angelo Vanzulli3, Alberto Torresin1
1Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
2Department of Energy, Politecnico di Milano, Milan, Italy
3Department of Radiology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy

Tóm tắt

Liều bức xạ trong chụp cắt lớp vi tính (CT) đã trở thành một chủ đề được quan tâm nhiều do số lượng các cuộc kiểm tra CT ngày càng tăng trên toàn cầu. Do đó, việc theo dõi liều bức xạ và phần mềm tính toán liều cơ quan ngày càng được sử dụng nhiều hơn. Chúng tôi đã đánh giá tính biến đổi của liều cơ quan liên quan đến việc sử dụng các ứng dụng phần mềm hoặc phương pháp tính toán khác nhau. Chúng tôi đã thử nghiệm bốn ứng dụng phần mềm thương mại trên các giao thức CT đang được sử dụng tại bệnh viện của chúng tôi: CT-Expo, NCICT, NCICTX và Virtual Dose. Chúng tôi đã so sánh các hệ số liều, liều cơ quan ước tính và liều hiệu quả thu được từ bốn ứng dụng phần mềm bằng cách thay đổi các thông số phơi nhiễm. Kết quả của chúng tôi cũng được so sánh với các ước tính được báo cáo bởi các tác giả phần mềm. Tất cả bốn ứng dụng phần mềm đều cho thấy sự phụ thuộc vào điện áp ống và chỉ số liều CT thể tích, trong khi chỉ có CT-Expo cũng phụ thuộc vào các thông số phơi nhiễm khác, đặc biệt là kiểu máy quét và độ dốc giảm, gây ra sự biến đổi lên tới 50%. Chúng tôi đã phát hiện một sự không đồng nhất giữa kết quả của chúng tôi và những gì được báo cáo bởi các tác giả phần mềm (lên tới 600%), chủ yếu do phạm vi các vùng cơ thể được kiểm tra khác nhau. Phạm vi tương đối của việc so sánh bốn ứng dụng phần mềm nằm trong khoảng 35% cho hầu hết các cơ quan bên trong vùng quét, nhưng tăng lên trên 100% cho các cơ quan bị chiếu xạ một phần và bên ngoài vùng quét. Đối với liều hiệu quả, sự biến đổi này ít rõ ràng hơn (dao động từ 9 đến 36%). Hai nguồn chính của sự biến đổi liều cơ quan là ứng dụng phần mềm được sử dụng và vùng quét được thiết lập. Ước lượng liều phải được liên kết với quy trình được sử dụng để tính toán nó.

Từ khóa

#liều bức xạ #chụp cắt lớp vi tính #phần mềm tính toán liều #liều cơ quan #liều hiệu quả

Tài liệu tham khảo

Goske MJ, Applegate KE, Boylan J et al (2008) The Image Gently campaign: working together to change practice. AJR Am J Roentgenol 190:273–274. https://doi.org/10.2214/AJR.07.3526 Palorini F, Origgi D, Granata C, Matranga D, Salerno S (2014) Adult exposures from MDCT including multiphase studies: first Italian nation widesurvey. Eur Radiol 24:469–483. https://doi.org/10.1007/s00330-013-3031-7 Zenone F, Aimonetto S, Catuzzo P et al (2012) Effective dose delivered by conventional radiology to Aosta Valley population between 2002 and 2009. Br J Radiol 85:e330–e338. https://doi.org/10.1259/bjr/19099861 Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505. https://doi.org/10.1016/S0140-6736(12)60815-0 Mathews JD, Forsythe AV, Brady Z et al (2013) Cancer risk in 680000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346:f2360–f2378. https://doi.org/10.1136/bmj.f2360 Brenner DJ, Elliston C, Hall E, Berdon W (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 176:289–296. https://doi.org/10.2214/ajr.176.2.1760289 Brenner DJ, Hall EJ (2007) Computed tomography- an increasing source of radiation exposure. N Engl J Med 357:2277–2284. https://doi.org/10.1056/NEJMra072149 Schegerer AA, Nagel HD, Stamm G, Adam G, Brix G (2017) Current CT practice in Germany: results and implications of a nationwide survey. Eur J Radiol 90:114–128. https://doi.org/10.1016/j.ejrad.2017.02.021 Pola A, Corbella D, Righini A et al (2018) Computed tomography use in a large italian region: trend analysis 2004-2014 of emergency and outpatient CT examinations in children and adults. Eur Radiol 28:2308–2318. https://doi.org/10.1007/s00330-017-5225-x Hall EJ, Brenner DJ (2008) Cancer risks from diagnostic radiology. Br J Radiol 81:362–378. https://doi.org/10.1259/bjr/01948454 Hendee WR, O’Connor MK (2012) Radiation risks of medical imaging: separating fact from fantasy. Radiology 264:312–321. https://doi.org/10.1148/radiol.12112678 Zanca F, Demeter M, Oyen R, Bosmans H (2012) Excess radiation and organ dose in chest and abdominal CT due to CT acquisition beyond expected anatomical boundaries. Eur Radiol 22:779–788. https://doi.org/10.1007/s00330-011-2332-y Samei E, Tian X, Segars WP (2014) Determining organ dose: the holy grail. Pediatr Radiol 44:460–467. https://doi.org/10.1007/s00247-014-3117-7 Shrimpton PC, Hillier MC, Lewis MA, Dunn M (2006) National survey of doses from CT in the UK: 2003. Br J Radiol 79:968–980. https://doi.org/10.1259/bjr/93277434 Zankl M, Veit R, Williams G et al (1988) The construction of computer tomographic phantoms and their application in radiology and radiation protection. Radiat Environ Biohys 27:153–164. https://doi.org/10.1007/BF01214605 Kalender WA, Schmidt B, Zankl M, Schmidt M (1999) A PC program for estimating organ dose and effective dose values in computed tomography. Eur Radiol 9:555–562. https://doi.org/10.1007/s003300050709 Sahbaee P, Segars WP, Samei E (2014) Patient-based estimation of organ dose for a population of 58 adult patients across 13 protocol categories. Med Phys 41:072104. https://doi.org/10.1118/1.4883778 Xu XG (2014) An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history. Phys Med Biol 59:R233–R302. https://doi.org/10.1088/0031-9155/59/18/R233 Khursheed A, Hillier MC, Shrimpton PC, Wall BF (2002) Influence of patient age on normalized effective doses calculated for CT examinations. Br J Radiol 75:819–830. https://doi.org/10.1259/bjr.75.898.750819 Lechel U, Becker C, Langenfeld-Jäger G, Brix G (2009) Dose reduction by automatic exposure control in multidetector computed tomography: comparison between measurement and calculation. Eur Radiol 19:1027–1034. https://doi.org/10.1007/s00330-008-1204-6 Stamm G, Nagel HD (2002) CT-Expo—a novel program for dose evaluation in CT. Rofo 174:1570–1576. https://doi.org/10.1055/s-2002-35937 Long DJ, Lee C, Tien C et al (2013) Monte Carlo simulations of adult and pediatric computed tomography exams: validation studies of organ doses with physical phantoms. Med Phys 40:013901. https://doi.org/10.1118/1.4771934 Lee C, Kim KP, Long D et al (2011) Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations. Med Phys 38:1196–1206. https://doi.org/10.1118/1.3544658 Lee C, Kim KP, Long DJ, Bolch WE (2012) Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation. Med Phys 39:2129–2146. https://doi.org/10.1118/1.3693052 Bolch W, Lee C, Wayson M, Johnson P (2010) Hybrid computational phantoms for medical dose reconstruction. Radiat Environ Biohys 49:155–168. https://doi.org/10.1007/s00411-009-0260-x Hurtado JL, Lee C, Lodwick D, Goede T, Williams JL, Bolch WE (2012) Hybrid computational phantoms representing the reference adult male and adult female: construction and applications for retrospective dosimetry. Health Phys 102:292–304. https://doi.org/10.1097/HP.0b013e318235163f (1994) Plan and operation of the Third National Health and Nutrition Examination Survey, 1988-94. Series 1: programs and collection procedures. Vital Health Stat 32:1–407 Geyer AM, O’Reilly S, Lee C, Long DJ, Bolch WE (2014) The UF/NCI family of hybrid computational phantoms representing the current US population of male and female children, adolescents and adults-application to CT dosimetry. Phys Med Biol 59:5225–5242. https://doi.org/10.1088/0031-9155/59/18/5225 Ding A, Gao Y, Liu H et al (2015) Virtual Dose: a software for reporting organ doses from CT for adult and pediatric patients. Phys Med Biol 60:5601–5625. https://doi.org/10.1088/0031-9155/60/14/5601 Gu J, Bednarz B, Caracappa PF, Xu XG (2009) The development, validation and application of a multi-detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations. Phys Med Biol 54:2699–2717. https://doi.org/10.1088/0031-9155/54/9/007 Zhang J, Na YH, Caracappa PF, Xu XG (2009) RPI-AM and RPI-AF, a pair of mesh-based, size-adjustable adult male and female computational phantoms using ICRP-89 parameters and their calculations for organ doses from monoenergetic photon beams. Phys Med Biol 54:5885–5908. https://doi.org/10.1088/0031-9155/54/19/015 Na YH, Zhang B, Zhang J, Caracappa PF, Xu XG (2010) Deformable adult human phantoms for radiation protection dosimetry: anthropometric data representing size distributions of adult worker populations and software algorithms. Phys Med Biol 55:3789–3811. https://doi.org/10.1088/0031-9155/55/13/015 Xu XG, Taranenko V, Zhang J, Schi C (2007) A boundary-representation method for designing whole-body radiation dosimetry models: pregnant females at the ends of three gestational periods—RPI-P3, -P6 and -P9. Phys Med Biol 52:7023–7044. https://doi.org/10.1088/0031-9155/52/23/017 Ding A, Mille MM, Liu T, Caracappa PF, Xu XG (2012) Extension of RPI-adult male and female computational phantoms to obese patients and a Monte Carlo study of the effect on CT imaging dose. Phys Med Biol 57:2441–2459. https://doi.org/10.1088/0031-9155/57/9/2441 Menzel HG, Clement C, DeLuca P (2009) ICRP Publication 110. Realistic reference phantoms: an ICRP/ICRU joint effort. A report of adult reference computational phantoms. Ann ICRP 39:1-164. https://doi.org/10.1016/j.icrp.2009.09.001 Gao Y, Quinn B, Mahmood U et al (2017) A comparison of pediatric and adult CT organ dose estimation methods. BMC Med Imaging 17:28. https://doi.org/10.1186/s12880-017-0199-3 Lee C, Kim KP, Bolch WE, Moroz BE, Folio L (2015) NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans. J Radiol Prot 35:891–909. https://doi.org/10.1088/0952-4746/35/4/891 Turner AC, Zhang D, Khatonabadi M et al (2011) The feasibility of patient size-corrected, scanner-independent organ dose estimates for abdominal CT exams. Med Phys 38:820–829. https://doi.org/10.1118/1.3533897 Turner AC, Zankl M, De Marco JJ et al (2010) The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: using CTDIvol to account for differences between scanners. Med Phys 37:1816–1825. https://doi.org/10.1118/1.3368596 (2007). The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 37):1-332. https://doi.org/10.1016/j.icrp.2007.10.003. Huda W, Ogden KM, Khorasani MR (2008) Converting dose-length product to effective dose at CT. Radiology 248:995–1003. https://doi.org/10.1148/radiol.2483071964 American Association of Physicists in Medicine (2010) Report of AAPM Task Group 111 Comprehensive methodology for the evaluation of radiation dose in x-ray computed tomography, College Park, MD: AAPM. Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166. https://doi.org/10.1148/radiol.10100047 Zhang Y, Li X, Segars WP, Samei E (2012) Organ doses, effective doses, and risk indices in adult CT: comparison of four types of reference phantoms across different examination protocols. Med Phys 39:3404–3423. https://doi.org/10.1118/1.4718710 Li X, Samei E, Segars WP et al (2011) Patient-specific radiation dose and cancer risk estimation in CT: part II. Application to patients. Med Phys 38:408–419. https://doi.org/10.1118/1.3515864