Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Quá khứ, hiện tại và tương lai của các chất dinh dưỡng hữu cơ
Tóm tắt
Sự chậm lại trong việc gia tăng năng suất cây trồng mặc dù có tỷ lệ bón phân cao, sự suy giảm sức khỏe đất và ô nhiễm ngoài hiện trường là minh chứng cho thấy nhiều hệ thống sản xuất sinh học cần phải có những chiến lược cung cấp dinh dưỡng sáng tạo. Một hướng đi là gia tăng đóng góp của các hợp chất hữu cơ như nguồn dinh dưỡng cho cây. Việc cây trồng tiếp nhận và chuyển hóa các phân tử hữu cơ (‘chất dinh dưỡng hữu cơ’) đã được phát hiện trước khi có sự quan tâm gần đây với các gốc khoa học có nguồn gốc từ thế kỷ 19. Nghiên cứu về các chất dinh dưỡng hữu cơ tiếp tục được thực hiện trong những thập kỷ đầu thế kỷ 20, nhưng sau hai cuộc chiến tranh thế giới và những gia tăng năng suất đạt được nhờ phân bón khoáng và phân bón tổng hợp, việc tiếp tục nghiên cứu một cách liền mạch đã không thể xảy ra, và chúng tôi nhận thấy có những khoảng trống lớn trong việc truyền đạt các phương thức và kiến thức. Đề cập đến sự đối lập giữa 'nhà hữu cơ' và 'nhà khoáng' trong dinh dưỡng thực vật, chúng tôi minh họa cách mà trọng tâm của dinh dưỡng cây trồng đã chuyển từ dinh dưỡng hữu cơ sang dinh dưỡng vô cơ. Chúng tôi thảo luận về những lý do và cung cấp bằng chứng cho vai trò của các hợp chất hữu cơ như là các chất dinh dưỡng và tác nhân tín hiệu. Sau hàng thập kỷ tập trung vào các chất dinh dưỡng vô cơ, các triển vọng đã mở rộng trở lại một cách đáng kể. Như đã xảy ra trước đây trong lịch sử nông nghiệp, khoa học cần xác thực các thực hành nông học. Chúng tôi lập luận rằng một khuôn khổ xem cây trồng như những sinh vật hỗn hợp với khả năng nội tại để sử dụng các chất dinh dưỡng hữu cơ, thông qua việc tiếp nhận trực tiếp hoặc được hỗ trợ bởi sự phân hủy do exoenzyme, sẽ biến đổi quản lý dinh dưỡng và chọn giống cây trồng để bổ sung cho phân bón vô cơ và tổng hợp bằng các chất dinh dưỡng hữu cơ.
Từ khóa
#dinh dưỡng hữu cơ #sản xuất nông nghiệp #phân bón #dinh dưỡng cây trồng #quản lý dinh dưỡngTài liệu tham khảo
Ackert L (2006) The role of microbes in agriculture: Sergei Vinogradskii’s discovery and investigation of chemosynthesis, 1880–1910. J Hist Biol 39:373–406
Acton EH (1889) The assimilation of carbon by green plants from certain organic compounds. Proc R Soc Lond B Biol Sci 47:118–121
Adamczyk B, Godlewski M, Zimny J, Zimny A (2008) Wheat (Triticum aestivum) seedlings secrete proteases from the roots and, after protein addition, grow well on medium without inorganic nitrogen. Plant Biol 10:718–724
Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67
Anderson G (1958) Identification of derivatives of deoxyribonucleic acid in humic acid. Soil Sci 86:169–174
Badgley C, Perfecto I, Cassmann K (2007) Can organic agriculture feed the world? Renew Agric Food Syst 22:80–89
Baessler P (1884) Assimilation des Asparagins durch die Pflanze. Landw Vers Stat 33:231–240
Bailey KL, Lazarovits G (2003) Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res 72:169–180
Berthelot M (1888) Sur la transformation dans le sol, des azotates en composes organiques azotes. C R Acad Sci 106:638–641
Bollard EG (1966) A comparative study of the ability of organic nitrogenous compounds to serve as sole sources of nitrogen for the growth of plants. Plant Soil 25:153–166
Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42:136–144
Brigham RO (1917) Assimilation of organic nitrogen by Zea mays and the influence of Bacillus subtilis on such assimilation. Soil Sci 3:155–200
Cailletet L (1911) Sur l’origine du carbone assimilé par les plantes (On the origin of carbon assimilated by plants). C R Acad Sci 152:1215–1217
Cambui CA, Svennerstam H, Gruffman L, Nordin A, Ganeteg U, Nasholm T (2011) Patterns of plant biomass partitioning depend on nitrogen source. PLoS One 6(4):e19211
Cameron CA (1857) On urea as a direct source of nitrogen to vegetation. Rep Br Assoc Adv Sci 44:44–45
Chapin FS III, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361:150–153
Chen DL, Delatorre CA, Bakker A, Abel S (2000) Conditional identification of phosphate-starvation-response mutants in Arabidopsis thaliana. Planta 211:13–22
Chimphango SBM, Musil CF, Dakora FD (2003) Response of purely symbiotic and NO3-fed nodulated plants of Lupinus luteus and Vicia atropurpurea to ultraviolet-B radiation. J Exp Bot 54:1771–1784
Chivenge P, Vanlauwe B, Six J (2011) Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. Plant Soil 342:1–30
Clode PL, Kilburn MR, Jones DL, Stockdale EA, Cliff JB III, Herrmann AM, Murphy DV (2009) In situ mapping of nutrient uptake in the rhizosphere using nanoscale secondary ion mass spectrometry. Plant Physiol 151:1751–1757
Coronado C, Zuanazzi J, Sallaud C, Quirion JC, Esnault R, Husson HP, Kondorosi A, Ratet P (1995) Alfalfa root flavonoid production is nitrogen regulated. Plant Physiol 108:533–542
Davey CB (1996) Nursery soil management-organic amendments. In: Landis TD, Douth DB (eds) National proceedings, forest and conservation nursery associations. USDA Forest Service PNWRS, pp 6–18
Dessaux Y, Hinsinger P, Lemanceau P (2009) Rhizosphere: so many achievements and even more challenges. Plant Soil 321:1–3
Dourado-Neto D, Powlson D, Abu Bakar R, Bacchi OOS, Basanta MV, Cong PT, Keerthisinghe G, Ismaili M, Rahman SM, Reichardt K, Safwat MSA, Sangakkara R, Timm LC, Wang JY, Zagal E, van Kessel C (2010) Multiseason recoveries of organic and inorganic nitrogen-15 in tropical cropping systems. Soil Sci Soc Am J 74:139–152
Drinkwater LE, Snapp SS (2007) Nutrients in agroecosystems: re-thinking the management paradigm. Adv Agron 92:163–186
Drinkwater L, Wagoner P, Sarranttonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396:262–265
Dufault RJ, Hester A, Ward B (2008) Influence of organic and synthetic fertility on nitrate runoff and leaching, soil fertility, and sweet corn yield and quality. Commun Soil Sci Plant Anal 39:1858–1874
Edwards JH, Someshwar AV (2000) Chemical, physical, and biological characteristics of agricultural an forest by-products for land applications. In: Bartels JMI, Dick WA (eds) Land application of agricultural, industrial, and municipal by-products. Soil Society of America Series Book, pp 1–62
Eggenberger K, Birtalan E, Schroder T, Brase S, Nick P (2009) Passage of trojan peptoids into plant cells. ChemBioChem 10:2504–2512
Eggenberger K, Mink C, Wadhwani P, Ulrich AS, Nick P (2011) Using the peptide Bp100 as a cell-penetrating tool for the chemical engineering of actin filaments within living plant cells. ChemBioChem 12:132–137
FAO (2011) Save and grow: a new paradigm of agriculture http://www.fao.org/ag/save-and-grow/
Feller CL, Thuriès LJM, Manlay RJ, Robin P, Frossard E (2003) “The principles of rational agriculture” by Albrecht Daniel Thaër (1752–1828). An approach to the sustainability of cropping systems at the beginning of the 19th century. J Plant Nutr Soil Sci 166:687–698
Flaig W (1965) Effect of lignin degradation products on plant growth. In: The use of isotopes and radiation in soil-plant nutrition studies. International Atomic Energy Agency, Ankara, pp 3–19
Flaig W (1968) Uptake of organic substances from soil organic matter by plant and their influence on metabolism. In: Study week on organic matter and soil fertility (Vatican City). North-Holland Pub. Co.; Wiley Interscience Division, J. Wiley & Sons, Amsterdam, New York, pp 723–776
Flaig W (1984) Soil organic matter as a source of nutrients. In: Banta S, Mendoza CV (eds) Organic matter and rice. International Rice Research Institute, pp 73–92
Flaig W, Harms H (1977) Uptake and transformation of labelled lignin derived phenols as a contribution of phenol metabolism in plants. J Nucl Agric Biol 6:41–44
Flaig W, Saalbach E, Schobinger U (1960) Humic acids. XIX. The effect of cold-water extracts from wheat straw subjected to different periods of decomposition on the early growth and nutrient uptake of rye seedlings. Z Pflanzenernähr Düngung Bodenkd 88:232–236
Forde BG, Walch-Liu P (2009) Nitrate and glutamate as environmental cues for behavioural responses in plant roots. Plant Cell Environ 32:682–693
Führ F, Sauerbeck D (1966) The uptake of straw decomposition products by plant roots. In: The use of isotopes in soil organic matter studies. Pergamon Press Ltd., Oxford, pp 73–83
Gahan PB, Perry IJ, Stroun M, Anker P (1974) Effect of exogenous DNA on acid deoxyribonuclease activity in intact roots of Vicia faba L. Ann Bot (Lond) 38:701–704
Gardenas AI, Agren GI, Bird JA, Clarholm M, Hallin S, Ineson P, Katterer T, Knicker H, Nilsson SI, Näsholm T, Ogle S, Paustian K, Persson T, Stendahl J (2011) Knowledge gaps in soil carbon and nitrogen interactions—from molecular to global scale. Soil Biol Biochem 43:702–717
Ghorbani R, Wilcockson S, Leifert C (2005) Alternative treatments for late blight control in organic potato: antagonistic micro-organisms and compost extracts for activity against Phytophthora infestans. Potato Res 48:181–189
Goyal S, Chander K, Mundra MC, Kapoor KK (1999) Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions. Biol Fertil Soils 29:196–200
Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296
Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010
Hall AD (1919) The book of the Rothamsted experiments, 2nd edn. John Murray, London, p 332
Hellriegel H, Wilfarth H (1888) Untersuchungen über die Stickstoffnahrung der Graminen und Leguminosen. Beilageheft zu der Zeitschrift des Vereins für Rübenzucker-Industrie Deutschen Reichs, 234 pp
Hill PW, Quilliam RS, DeLuca TH, Farrar J, Farrell M, Roberts P, Newsham KK, Hopkins DW, Bardgett RD, Jones DL (2011a) Acquisition and assimilation of nitrogen as peptide-bound and D-enantiomers of amino acids by wheat. PLoS One 6(4):e19220
Hill PW, Farrar J, Roberts P, Farrell M, Grant H, Newsham KK, Hopkins DW, Bardgett RD, Jones DL (2011b) Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition. Nat Clim Chang 1:50–53
Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152
Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci U S A 107:13754–13759
Hodge A, Helgason T, Fitter AH (2010) Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol 3:267–273
Hoitink H, Boehm M (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446
Holst J, Brackin R, Robinson N, Lakshmanan P, Schmidt S (2012) Soluble inorganic and organic nitrogen in two Australian soils under sugarcane cultivation. Agric Ecosyst Environ 155:16–26
Houlton BZ, Wang YP, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–331
Hutchinson H, Miller N (1911) The direct assimilation of inorganic and organic forms of nitrogen by higher plants. Zweite Abt Bd 30:513–547
Inselsbacher E, Näsholm T (2012) The below-ground perspective of forest plants: soil provides mainly organic nitrogen for plants and mycorrhizal fungi. New Phytol. doi:10.1111/j.1469-8137.2012.04169.x
Jämtgård S, Näsholm T, Huss-Danell K (2008) Characteristics of amino acid uptake in barley. Plant Soil 302:221–231
Jämtgård S, Näsholm T, Huss-Danell K (2010) Nitrogen compounds in soil solutions of agricultural land. Soil Biol Biochem 42:2325–2330
Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39:1–23
Jensen H (1950) A survey of biological nitrogen fixation in relation to the world supply of nitrogen. In: Transactions 4th International Congress of Soil Science, 1: 165–172
Jensen WA (1957) The incorporation of C14-adenine and C14-phenylalanine by developing root-tip cells. Proc Natl Acad Sci 43:1038–1046
Johnston AE, Poulton PR, Coleman K (2009) Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes. Adv Agron 101:1–57
Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants—an important N uptake pathway? Soil Biol Biochem 37:413–423
Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Cui ZL, Yin B, Christie P, Zhu ZL, Zhang FS (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci U S A 106:3041–3046
Kaur K, Kapoor KK, Gupta AP (2005) Impact of organic manures with and without mineral fertilizers on soil chemical and biological properties under tropical conditions. J Plant Nutr Soil Sci 168:117–122
Khan SA, Mulvaney RL, Ellsworth TR, Boast CW (2007) The myth of nitrogen fertilization for soil carbon sequestration. J Environ Qual 36:1821–1832
Kirchmann H (1985) Losses, plant uptake and utilisation of manure nitrogen during a production cycle. Acta Agriculturae: Scandinavica Suppl 24:1–77
Kirchmann H, Bergström L (2001) Do organic farming practices reduce nitrate leaching? Commun Soil Sci Plant Anal 32:997–1028
Knudson L (1920) The secretion of invertase by plant roots. Am J Bot 7:371–379
Koepf H (1973) Organic management reduces leaching of nitrate. Biodynamics 108:20–30
Kohli A, Narciso JO, Mirob B, Raorane M (2012) Root proteases: reinforced links between nitrogen uptake and mobilization and drought tolerance. Phys Plant 45:165–179
Komarova NY, Thor K, Gubler A, Meier S, Dietrich D, Weichert A, Suter Grotemeyer M, Tegeder M, Rentsch D (2008) AtPTR1 and AtPTR5 transport dipeptides in planta. Plant Physiol 148:856–869
Kristensen L, Stopes C, Kølster P, Granstedt A (1995) Nitrogen leaching in ecological agriculture: summary and recommendations. Biol Agric Hortic 11:331–340
Kudeyarov VN (1992) Compensation for organic carbon loss from soil at nitrogen fertilizer application. In: Kubát J (ed) Humus, its structure and role in agriculture and environment. Elsevier, pp 81–89
Kuo Y-H, Lambein F, Ikegami F, van Parijs R (1982) Isoxazolin-5-ones and amino acidsin root exudates of pea and sweet pea seedlings. Plant Physiol 70:1283–1289
Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant–microbe–soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115
Larsen J, Ravnskov S, Sorensen J (2007) Capturing the benefits of arbuscular mycorrhizae in horticulture. In: Hamel C, Planchette C (eds) Mycorrhizae in crop production. The Haworth Press, Binghamton, pp 123–150
Lawes JB, Gilbert JH (1887) On the present position of the question of the sources of the nitrogen of vegetation, with some new results, and preliminary notice of new vegetation. Proc R Soc Lond 43:108–116
Lawes JB, Gilbert JH, Evan P (1860) On the source of the nitrogen; with special reference to the question whether plants assimilate free or uncombined nitrogen. Proc R Soc Lond 10:544–557
Ledoux L (1965) Uptake of DNA by living cells (barley root Escherichia coli mouse). Prog Nucleic Acid Res Mol Biol 4:231–267
Ledoux L, Huart R (1972) Fate of exogenous DNA in plants. In: Ledoux L (ed) Uptake of informative molecules by living cells. North-Holland Publishing Co, Amsterdam, pp 254–276
Lipson D, Näsholm T (2001) The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128:305–316
MacVicar R (1957) Nitrogen-15 as a tracer of nitrogen metabolism of plants. In: Comar CL (ed) Atomic energy and agriculture, AAAS Publ. No.49, pp 111–122
Manlay RJ, Feller C, Swift MJ (2007) Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric Ecosyst Environ 119:217–233
Marschner H (1995) Mineral nutrition of higher plants. Academic Press Ltd., London
Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci U S A 93:7623–7627
Mazé P (1899) L’assimilation des hydrates de carbone et l’élaboration de l’azote organique dans les végétaux supérieurs (Carbohydrate assimilation and organic nitrogen synthesis in higher plants). C R Acad Sci 128:185–187
McNeill JR, Winiwarter V (2004) Breaking the sod: humankind, history, and soil. Science 304:1627–1629
Miettinen JK (1959) Assimilation of amino acids in higher plants, utilization of nitrogen and its compounds by plants. Symp Soc Exp Biol 13:210–229
Miller RH, Schmidt EL (1965) Uptake and assimilation of amino acids supplied to the sterile soil: root environment of the bean plant (Phaseolus vulgaris). Soil Sci 100:323–330
Molliard M (1905) Culture pure des plantes vertes dans une atmosphère confinée en présence de matières organiques (Pure culture of green plants in confined atmosphere and presence of organic compounds). C R Acad Sci 141:389–392
Molliard M (1909) Valeur alimentaire de l’asparagine et de l’urée vis-à-vis du radis (Nutritional value of asparagin and urea for radish). Bull Soc Bot Fr 56:534–538
Molliard M (1910) Recherches sur l’utilisation par les plantes supérieures de diverses substances azotées (Research on the use of nitrogen substances by higher plants). Bull Soc Bot Fr 57:541–546
Mulvaney RL, Khan SA, Ellsworth TR (2009) Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production. J Environ Qual 38:2295–2314
Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48
Neumann G, Martinoia E (2002) Cluster roots—an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167
Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci U S A 105:4524–4529
Paungfoo-Lonhienne C, Schenk PM, Lonhienne TGA, Brackin R, Meier S, Rentsch D, Schmidt S (2009) Nitrogen affects cluster root formation and expression of putative peptide transporters. J Exp Bot 60:2665–2676
Paungfoo-Lonhienne C, Lonhienne TGA, Mudge SR, Schenk PM, Christie M, Carroll BJ, Schmidt S (2010a) DNA is taken up by root hairs and pollen, and stimulates root and pollen tube growth. Plant Physiol 153:799–805
Paungfoo-Lonhienne C, Rentsch D, Robatzek S, Webb R, Sagulenko E, Näsholm T, Schmidt S, Lonhienne T (2010b) Turning the table: plants consume microbes as a source of nutrients. PLoS One 5(7):e11915
Phelan PL (2009) Ecology-based agriculture and the next Green Revolution. Is modern agriculture exempt from the laws of ecology? In: Bohlen P, House G (eds) Sustainable agroecosystem management. Boca Raton, pp. 98–128
Preston RD (1941) The Rothamsted field experiments on the growth of wheat. Nature 147:583–584
Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693
Raven JA, Beardall J, Flynn KJ, Maberly SC (2009) Darwin review: phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin’s insectivorous plants. J Exp Bot 60:3975–3987
Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391
Reeves DW (1997) The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res 43:131–167
Rentsch D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581:2281–2289
Richardson AE, Hadobas PA, Hayes JE (2000) Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ 23:397–405
Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649
Robinson N, Brackin R, Vinall K, Soper F, Holst J, Gamage H, Paungfoo-Lonhienne C, Rennenberg H, Lakshmanan P, Schmidt S (2011) Nitrate paradigm does not holdup for sugarcane. PLoS One 6:e19045
Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475
Roper MM, Ladha JK (1995) Biological N2 fixation by heterotrophic and phototrophic bacteria in association with straw. Plant Soil 174:211–224
Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244:263–271
Ryan P, Dessaux Y, Thomashow L, Weller D (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383
Salter RM (1947) World soil and fertilizer resources in relation to food needs. Science 105:533–538
Santamaria P (2006) Nitrate in vegetables: toxicity, content, intake and EC regulation. J Sci Food Agric 86:10–17
Scheffer F, Kickuth R, Schlimme E (1968) Aufnahme und metabolisierung radiculär angebotenen indols durch Sinapis alba. Plant Soil 28:453–459
Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602
Schmidt S, Mason M, Sangtiean T, Stewart GR (2003) Do cluster roots of Hakea actities (Proteaceae) acquire complex organic nitrogen? Plant Soil 248:157–165
Schreiner O (1913) The organic constituents of soils. US Department of Agriculture, Bureau of Soils, Circular No. 74 - Washington, Government Printing Office
Schreiner O, Shorey EC (1910a) The presence of arginine and histidine in soils. J Biol Chem 8:381–384
Schreiner O, Shorey EC (1910b) Pyrimidine derivatives and purine bases in soils. J Biol Chem 8:385–393
Schreiner O, Skinner JJ (1915) Specific action of organic compounds in modifying plant characteristics: methyl glycol versus glycocoll. Bot Gaz 59:445–463
Schreiner O, Mertz AR, Brown BE (1938) Fertiliser materials—soil & men. In: USDA Yearbook of Agriculture 1938. US Gov. Printing Office, pp 487–521
Seear J, Bradfute OE, McLaren AO (1968) Uptake of proteins by plant roots. Phys Plant 21:979–989
Seegmüller S, Rennenberg H (2002) Transport of organic sulfur and nitrogen in the roots of young mycorrhizal pedunculate oak trees (Quercus robur L.). Plant Soil 242:291–297
Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature. doi:10.1038/nature11069
Skinner JJ (1912a) Beneficial effect of creatinine and creatine on growth. Bot Gaz 54:0152–0163
Skinner JJ (1912b) Effect of histidine and arginine as soil constituents. In 8th International Congress of Applied Chemistry, Vol. XV covering Section VII: Agricultural Chemistry. pp 253–264
Smil V (2004) Enriching the Earth: Fritz Haber, Carl Bosch, and the transformation of world food production. MIT Press, Cambridge, pp 133–154
Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057
Soper FM, Paungfoo-Lonhienne C, Brackin R, Rentsch D, Schmidt S, Robinson N (2011) Arabidopsis and Lobelia anceps access small peptides as a nitrogen source for growth. Funct Plant Biol 38:788–796
Streeter J (1988) Inhibition of legume nodule formation and N2 fixation by nitrate. Crit Rev Plant Sci 7:1–23
Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 472:159–161
Svennerstam H, Jämtgård S, Ahmad I, Huss-Danell K, Näsholm T, Ganeteg U (2011) Transporters in Arabidopsis roots mediating uptake of amino acids at naturally occurring concentrations. New Phytol 191:459–467
Tate KR (1984) The biological transformation of P in soil. Plant Soil 76:245–256
Tegeder M, Rentsch D (2010) Uptake and partitioning of amino acids and peptides. Mol Plant 3:997–1011
Thaër A (1809) Grundsätze der Rationnellen Landwirtschaft (1809–1812). Realschulbuch Ed, Berlin
Thakur AK, Uphoff N, Antony E (2010) An assesssment of physiological effects of system of rice intensification (SRI) practices compared with recommended rice cultivation practices in India. Exp Agric 46:77–98
Thornton HG, Nicol H (1934) Further evidence upon the nitrogen uptake of grass grown with lucerne. J Agric Sci 24:540–543
Thornton B, Osborne SM, Paterson E, Cash P (2007) A proteomic and targeted metabolomic approach to investigate change in Lolium perenne roots when challenged with glycine. J Exp Bot 58:1581–1590
Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677
Vandenkoornhuyse P, Mahe S, Ineson P, Staddon P, Ostle N, Cliquet JB, Francez AJ, Fitter AH, Young JPW (2007) Active root-inhabiting microbes identified by rapid incorporation of plant-derived carbon into RNA. Proc Natl Acad Sci U S A 104:16970–16975
Verbruggen E, Roling WFM, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MGA (2010) Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186:968–979
Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586
Vidal EA, Tamayo KP, Gutierrez RA (2010) Gene networks for nitrogen sensing, signaling, and response in Arabidopsis thaliana. WIREs Syst Biol Med 2:683–693
Vinall K, Schmidt S, Brackin R, Lakshmanan P, Robinson N (2012) Amino acids are a nitrogen source for sugarcane. Funct Plant Biol. doi:10.1071/FP12042
Virtanen AI (1938) Cattle fodder and human nutrition. With special reference to biological nitrogen fixation. Cambridge University Press
Virtanen AI (1953) Atmosphärischer Stickstoff als Aufrechterhalter des Lebens auf der Erde. Angew Chem 65:1–11
Virtanen AI, von Hausen S (1935) Excretion of nitrogenous compounds from the root nodules of leguminous plants. Nature 135:184–185
Walch-Liu P, Ivanov II, Filleur S, Gan YB, Remans T, Forde BG (2006a) Nitrogen regulation of root branching. Ann Bot (Lond) 97:875–881
Walch-Liu P, Liu LH, Remans T, Tester M, Forde BG (2006b) Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol 47:1045–1057
Waterworth WM, Bray CM (2006) Enigma variations for peptides and their transporters in higher plants. Ann Bot 98:1–8
Whiteside MD, Treseder KK, Atsatt PR (2009) The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. Ecology 90:100–108
Winogradsky S (1890) Recherches sur les organismes de la nitrification. Ann Inst Pasteur t.4:213–234
Winogradsky S (1895) Recherches sur l’assimilation de l’azote libre de l’atmosphère par les microbes. Arch Sci Biol (St Petersb) 3:297–352
Winogradsky S (1927a) Sur la fixation de l’azote atmosphérique. In: Conférence faite au Congrès de l’Azote Synthétique à Montpellier, le 31 Mai 1927
Winogradsky S (1927b) Sur le pouvoir fixateur des terres. In: Conférence presentée au Septième Congrès de Chimie Industrielle, Octobre 1927
Wojtaszek P, Stobiecki M, Gulewicz K (1993) Role of nitrogen and plant growth regulators in the exudation and accumulation of isoflavonoids by roots of intact white lupin (Lupinus albus L.) plants. J Plant Physiol 142:689–694
Yamakawa S, Sakuta C, Matsubayashi Y, Sakagami Y, Kamada H, Satoh S (1998) The promotive effects of a peptidyl plant growth factor, phytosulfokine-alpha, on the formation of adventitious roots and expression of a gene for a root-specific cystatin in cucumber hypocotyls. J Plant Res 111:453–458
Zhang W, Han DY, Dick WA, Davis KR, Hoitink HAJ (1998) Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis. Phytopathology 88:450–455
Zhao L, Wu L, Dong C, Li Y (2010) Rice yield, nitrogen utilization and ammonia volatilization as influenced by modified rice cultivation at varying nitrogen rates. Agric Sci 1:10–16