Particle shape effects on thermophysical properties of alumina nanofluids

Journal of Applied Physics - Tập 106 Số 1 - 2009
Dileep Singh1, J.L. Routbort1
1Argonne National Laboratory 1 Energy Systems Division, , Argonne, Illinois 60439, USA

Tóm tắt

The thermal conductivity and viscosity of various shapes of alumina nanoparticles in a fluid consisting of equal volumes of ethylene glycol and water were investigated. Experimental data were analyzed and accompanied by theoretical modeling. Enhancements in the effective thermal conductivities due to particle shape effects expected from Hamilton–Crosser equation are strongly diminished by interfacial effects proportional to the total surface area of nanoparticles. On the other hand, the presence of nanoparticles and small volume fractions of agglomerates with high aspect ratios strongly increases viscosity of suspensions due to structural constrains. Nanoparticle surface charge also plays an important role in viscosity. It is demonstrated that by adjusting pH of nanofluid, it is possible to reduce viscosity of alumina nanofluid without significantly affecting thermal conductivity. Efficiency of nanofluids (ratio of thermal conductivity and viscosity increase) for real-life cooling applications is evaluated in both the laminar and turbulent flow regimes using the experimental values of thermal conductivity and viscosity.

Từ khóa


Tài liệu tham khảo

2006, KN

2007, Renewable Sustainable Energy Rev., 11, 512, 10.1016/j.rser.2005.01.010

2008, Heat Transfer Eng., 29, 432, 10.1080/01457630701850851

2006, Appl. Phys. Lett., 89, 133108, 10.1063/1.2356113

2008, Int. J. Therm. Sci., 47, 560, 10.1016/j.ijthermalsci.2007.05.004

1873, Electricity and Magnetism

1962, Ind. Eng. Chem. Fundam., 1, 187, 10.1021/i160003a005

1997, J. Appl. Phys., 81, 6692, 10.1063/1.365209

2002, Phys. Rev. B, 66, 224301, 10.1103/PhysRevB.66.224301

2003, Mol. Phys., 101, 1605, 10.1080/0026897031000068578

2003, J. Nanopart. Res., 5, 167, 10.1023/A:1024438603801

2005, Int. J. Heat Mass Transfer, 48, 2926, 10.1016/j.ijheatmasstransfer.2004.10.040

2002, J. Appl. Phys., 91, 4568, 10.1063/1.1454184

2003, Int. J. Heat Mass Transfer, 46, 2665, 10.1016/S0017-9310(03)00016-4

2006, Appl. Phys. Lett., 89, 143119, 10.1063/1.2360229

2006, Trans. ASME, Ser. C: J. Heat Transfer, 128, 588, 10.1115/1.2188509

2004, Appl. Phys. Lett., 84, 4316, 10.1063/1.1756684

2005, Phys. Rev. Lett., 94, 025901, 10.1103/PhysRevLett.94.025901

2007, Fluid Phase Equilib., 260, 275, 10.1016/j.fluid.2007.07.034

2007, Phys. Rev. Lett., 99, 095901, 10.1103/PhysRevLett.99.095901

2007, Phys. Rev. E, 76, 061203, 10.1103/PhysRevE.76.061203

2003, J. Appl. Phys., 93, 793, 10.1063/1.1524305

Sposito, 1996, The Environmental Chemistry of Aluminum

1983, Colloid and Interface Chemistry

1999, The Structure and Rheology of Complex Fluids

2000, Properties of Inorganic Compounds

2005, Chin. J. Sci. Instrum., 26, 678

2001, Elements of X-Ray Diffraction, 3rd ed.

2006, J. Synchrotron Radiat., 13, 440, 10.1107/S0909049506030184

2006, Trans. ASME, Ser. C: J. Heat Transfer, 128, 240, 10.1115/1.2150834

1999, J. Thermophys. Heat Transfer, 13, 474, 10.2514/2.6486

2005, Korea-Aust. Rheol. J., 17, 35

1998, Exp. Heat Transfer, 11, 151, 10.1080/08916159808946559

2004, Superlattices Microstruct., 35, 543, 10.1016/j.spmi.2003.09.012

1999, Trans. ASME, Ser. C: J. Heat Transfer, 121, 280, 10.1115/1.2825978

2008, Int. J. Heat Mass Transfer, 51, 2651, 10.1016/j.ijheatmasstransfer.2007.10.026

2008, Defect Diffus. Forum, 273–276, 566, 10.4028/www.scientific.net/DDF.273-276.566

2006, J. Colloid Interface Sci., 298, 1, 10.1016/j.jcis.2005.11.060

2002, Z. Metallkd., 93, 288, 10.3139/146.020288