Particle Filtering in Geophysical Systems

Monthly Weather Review - Tập 137 Số 12 - Trang 4089-4114 - 2009
Peter Jan van Leeuwen1
1Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands, and Department of Meteorology, University of Reading, Reading, United Kingdom

Tóm tắt

Abstract The application of particle filters in geophysical systems is reviewed. Some background on Bayesian filtering is provided, and the existing methods are discussed. The emphasis is on the methodology, and not so much on the applications themselves. It is shown that direct application of the basic particle filter (i.e., importance sampling using the prior as the importance density) does not work in high-dimensional systems, but several variants are shown to have potential. Approximations to the full problem that try to keep some aspects of the particle filter beyond the Gaussian approximation are also presented and discussed.

Từ khóa


Tài liệu tham khảo

Alexander, 2005, Accelerated Monte Carlo for optimal estimation of time series., J. Stat. Phys., 119, 1331, 10.1007/s10955-005-3770-1

Anderson, 1999, A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts., Mon. Wea. Rev., 127, 2741, 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2

Ballabrera-Poy, 2001, Application of a reduced-order Kalman filter to initialize a coupled atmosphere–ocean model: Impact on the prediction of El Niño., J. Climate, 14, 1720, 10.1175/1520-0442(2001)014<1720:AOAROK>2.0.CO;2

Bengtsson, 2003, Toward a nonlinear ensemble filter for high-dimensional systems., J. Geophys. Res., 108, 8775, 10.1029/2002JD002900

Bengtsson, 2008, Curse-of-dimensionality revisited: Collapse of the particle filter in very large systems., 10.1214/193940307000000518

Berliner, 2007, Approximate importance sampling Monte Carlo for data assimilation., Physica D, 230, 37, 10.1016/j.physd.2006.07.031

Bowler, 2006, Comparison of error breeding, singular vectors, random perturbations, and ensemble Kalman filter perturbation strategies on a simple model., Tellus, 58A, 538, 10.1111/j.1600-0870.2006.00197.x

Brasseur, 2005, Data assimilation for marine monitoring and prediction: The MERCATOR operational assimilation systems and the MERSEA developments., Quart. J. Roy. Meteor. Soc., 131, 3561, 10.1256/qj.05.142

Brusdal, 2003, A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems., J. Mar. Syst., 40–41, 253, 10.1016/S0924-7963(03)00021-6

Budhiraja, 2007, A survey of numerical methods for nonlinear filtering problems., Physica D, 230, 27, 10.1016/j.physd.2006.08.015

Burgers, 1998, Analysis scheme in the ensemble Kalman filter., Mon. Wea. Rev., 126, 1719, 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2

Chorin, 2004, Dimensional reduction for a Bayesian filter., Proc. Natl. Acad. Sci. USA, 101, 15013, 10.1073/pnas.0406222101

Doucet, 2001, Sequential Monte-Carlo Methods in Practice., 10.1007/978-1-4757-3437-9

Dowd, 2007, Bayesian statistical data assimilation for eco-system models using Markov chain Monte-Carlo., J. Mar. Syst., 68, 439, 10.1016/j.jmarsys.2007.01.007

Evensen, 1994, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics., J. Geophys. Res., 99, 10143, 10.1029/94JC00572

Evensen, 2006, Data Assimilation: The Ensemble Kalman Filter.

Eyink, 2006, A maximum entropy method for particle filtering., J. Stat. Phys., 123, 1071, 10.1007/s10955-006-9124-9

Fukunaga, 1972, Introduction to Statistical Pattern Recognition.

Gordon, 1993, Novel approach to nonlinear/non-Gaussian Bayesian state estimation., IEE Proc., 140, 107

Harlim, 2007, A non-Gaussian ensemble filter for assimilating infrequent noisy observations., Tellus, 59A, 225, 10.1111/j.1600-0870.2007.00225.x

Hastings, 1970, Monte Carlo sampling methods using Markov Chains and their applications., Biometrika, 57, 97, 10.1093/biomet/57.1.97

Hoteit, 2008, A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography., Mon. Wea. Rev., 136, 317, 10.1175/2007MWR1927.1

Houtekamer, 1998, Data assimilation using an ensemble Kalman filter technique., Mon. Wea. Rev., 126, 796, 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2

Jazwinski, 1970, Stochastic Processes and Filtering Theory.

Julier, 1997, A new extension of the Kalman filter to nonlinear systems., 10.1117/12.280797

Kalnay, 2004, Atomospheric Modeling, Data Assimilation and Predictability.

Kim, 2003, Ensemble filtering for nonlinear dynamics., Mon. Wea. Rev., 131, 2586, 10.1175/1520-0493(2003)131<2586:EFFND>2.0.CO;2

Kitagawa, 1996, Monte-Carlo filter and smoother for non-Gaussian non-linear state-space models., J. Comput. Graph. Stat., 5, 1

Kivman, 2003, Sequential parameter estimation for stochastic systems., Nonlinear Processes Geophys., 10, 253, 10.5194/npg-10-253-2003

Klaas, 2005, Towards practical N 2 Monte Carlo: The marginal particle filter.

Krol, 1998, Global OH trend inferred from methylchloroform measurements., J. Geophys. Res., 103D, 10697, 10.1029/98JD00459

Lorenc, 2003, The potential of the Ensemble Kalman filter for NWP: A comparison with 4D-VAR., Quart. J. Roy. Meteor. Soc., 129, 3183, 10.1256/qj.02.132

Losa, 2003, Sequential weak constraint parameter estimation in an ecosystem model., J. Mar. Syst., 43, 31, 10.1016/j.jmarsys.2003.06.001

Lui, 1998, Sequential Monte-Carlo methods for dynamical systems., J. Amer. Stat. Assoc., 90, 567

Metropolis, 1944, The Monte Carlo method., J. Amer. Stat. Assoc., 44, 335, 10.1080/01621459.1949.10483310

Miller, 1999, Data assimilation into stochastic models., Tellus, 51A, 167, 10.3402/tellusa.v51i2.12315

Musso, 2001, Improving regularized particle filters.

Nakano, 2007, Merging particle filter for sequential data assimilation., Nonlinear Processes Geophys., 14, 395, 10.5194/npg-14-395-2007

Ott, 2004, A local ensemble Kalman filter for atmospheric data assimilation., Tellus, 56, 415, 10.3402/tellusa.v56i5.14462

Papadakis, N. , 2007: Assimilation de donnees images: Application au suivi de courbes et de champs de vecteurs. Ph.D. thesis, University of Rennes I, 240 pp.

Papoulis, 1995, Probability, Random Variables, and Stochastic Processes.

Pham, 2001, Stochastic methods for sequential data assimilation in strongly nonlinear systems., Mon. Wea. Rev., 129, 1194, 10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2

Pitt, 1999, Filtering via simulation: Auxilary particle filters., J. Amer. Stat. Assoc., 94, 590, 10.1080/01621459.1999.10474153

Robert, 2004, Monte-Carlo Statistical Methods., 10.1007/978-1-4757-4145-2

Silverman, 1986, Density Estimation for Statistics and Data Analysis., 10.1007/978-1-4899-3324-9

Snyder, 2008, Obstacles to high-dimensional particle filtering., Mon. Wea. Rev., 136, 4629, 10.1175/2008MWR2529.1

Spiller, 2008, Modified particle filter methods for assimilating Lagrangian data into a point-vortex model., Physica D, 237, 1498, 10.1016/j.physd.2008.03.023

van der Merwe, 2000, The unscented particle filter.

van Leeuwen, 2002, Ensemble Kalman filters: Sequential importance resampling and beyond.

van Leeuwen, 2003, A truly variance-minimizing filter for nonlinear dynamics., Mon. Wea. Rev., 131, 2071, 10.1175/1520-0493(2003)131<2071:AVFFLA>2.0.CO;2

van Leeuwen, 2003, Nonlinear ensemble data assimilation for the ocean.

van Leeuwen, 1996, Data assimilation and inverse methods in terms of a probabilistic formulation., Mon. Wea. Rev., 124, 2898, 10.1175/1520-0493(1996)124<2898:DAAIMI>2.0.CO;2

Vossepoel, 2007, Parameter estimation using a particle method: Inferring mixing coefficients from sea-level observations., Mon. Wea. Rev., 135, 1006, 10.1175/MWR3328.1

West, 1993, Approximating posterior distributions by mixtures., J. Roy. Stat. Soc., 55, 409

Wikle, 2007, A Bayesian tutorial for data assimilation., Physica D, 230, 1, 10.1016/j.physd.2006.09.017

Xiong, 2006, A note on the particle filter with posterior Gaussian resampling., Tellus, 58A, 456, 10.1111/j.1600-0870.2006.00185.x

Zhou, 2006, Assessing the performance of the ensemble Kalman filter for land surface data assimilation., Mon. Wea. Rev., 134, 2128, 10.1175/MWR3153.1