Particle Filtering in Geophysical Systems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alexander, 2005, Accelerated Monte Carlo for optimal estimation of time series., J. Stat. Phys., 119, 1331, 10.1007/s10955-005-3770-1
Anderson, 1999, A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts., Mon. Wea. Rev., 127, 2741, 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2
Ballabrera-Poy, 2001, Application of a reduced-order Kalman filter to initialize a coupled atmosphere–ocean model: Impact on the prediction of El Niño., J. Climate, 14, 1720, 10.1175/1520-0442(2001)014<1720:AOAROK>2.0.CO;2
Bengtsson, 2003, Toward a nonlinear ensemble filter for high-dimensional systems., J. Geophys. Res., 108, 8775, 10.1029/2002JD002900
Bengtsson, 2008, Curse-of-dimensionality revisited: Collapse of the particle filter in very large systems., 10.1214/193940307000000518
Berliner, 2007, Approximate importance sampling Monte Carlo for data assimilation., Physica D, 230, 37, 10.1016/j.physd.2006.07.031
Bowler, 2006, Comparison of error breeding, singular vectors, random perturbations, and ensemble Kalman filter perturbation strategies on a simple model., Tellus, 58A, 538, 10.1111/j.1600-0870.2006.00197.x
Brasseur, 2005, Data assimilation for marine monitoring and prediction: The MERCATOR operational assimilation systems and the MERSEA developments., Quart. J. Roy. Meteor. Soc., 131, 3561, 10.1256/qj.05.142
Brusdal, 2003, A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems., J. Mar. Syst., 40–41, 253, 10.1016/S0924-7963(03)00021-6
Budhiraja, 2007, A survey of numerical methods for nonlinear filtering problems., Physica D, 230, 27, 10.1016/j.physd.2006.08.015
Burgers, 1998, Analysis scheme in the ensemble Kalman filter., Mon. Wea. Rev., 126, 1719, 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
Chorin, 2004, Dimensional reduction for a Bayesian filter., Proc. Natl. Acad. Sci. USA, 101, 15013, 10.1073/pnas.0406222101
Dowd, 2007, Bayesian statistical data assimilation for eco-system models using Markov chain Monte-Carlo., J. Mar. Syst., 68, 439, 10.1016/j.jmarsys.2007.01.007
Evensen, 1994, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics., J. Geophys. Res., 99, 10143, 10.1029/94JC00572
Evensen, 2006, Data Assimilation: The Ensemble Kalman Filter.
Eyink, 2006, A maximum entropy method for particle filtering., J. Stat. Phys., 123, 1071, 10.1007/s10955-006-9124-9
Fukunaga, 1972, Introduction to Statistical Pattern Recognition.
Gordon, 1993, Novel approach to nonlinear/non-Gaussian Bayesian state estimation., IEE Proc., 140, 107
Harlim, 2007, A non-Gaussian ensemble filter for assimilating infrequent noisy observations., Tellus, 59A, 225, 10.1111/j.1600-0870.2007.00225.x
Hastings, 1970, Monte Carlo sampling methods using Markov Chains and their applications., Biometrika, 57, 97, 10.1093/biomet/57.1.97
Hoteit, 2008, A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography., Mon. Wea. Rev., 136, 317, 10.1175/2007MWR1927.1
Houtekamer, 1998, Data assimilation using an ensemble Kalman filter technique., Mon. Wea. Rev., 126, 796, 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
Jazwinski, 1970, Stochastic Processes and Filtering Theory.
Kalnay, 2004, Atomospheric Modeling, Data Assimilation and Predictability.
Kim, 2003, Ensemble filtering for nonlinear dynamics., Mon. Wea. Rev., 131, 2586, 10.1175/1520-0493(2003)131<2586:EFFND>2.0.CO;2
Kitagawa, 1996, Monte-Carlo filter and smoother for non-Gaussian non-linear state-space models., J. Comput. Graph. Stat., 5, 1
Kivman, 2003, Sequential parameter estimation for stochastic systems., Nonlinear Processes Geophys., 10, 253, 10.5194/npg-10-253-2003
Klaas, 2005, Towards practical N 2 Monte Carlo: The marginal particle filter.
Krol, 1998, Global OH trend inferred from methylchloroform measurements., J. Geophys. Res., 103D, 10697, 10.1029/98JD00459
Lorenc, 2003, The potential of the Ensemble Kalman filter for NWP: A comparison with 4D-VAR., Quart. J. Roy. Meteor. Soc., 129, 3183, 10.1256/qj.02.132
Losa, 2003, Sequential weak constraint parameter estimation in an ecosystem model., J. Mar. Syst., 43, 31, 10.1016/j.jmarsys.2003.06.001
Lui, 1998, Sequential Monte-Carlo methods for dynamical systems., J. Amer. Stat. Assoc., 90, 567
Metropolis, 1944, The Monte Carlo method., J. Amer. Stat. Assoc., 44, 335, 10.1080/01621459.1949.10483310
Miller, 1999, Data assimilation into stochastic models., Tellus, 51A, 167, 10.3402/tellusa.v51i2.12315
Musso, 2001, Improving regularized particle filters.
Nakano, 2007, Merging particle filter for sequential data assimilation., Nonlinear Processes Geophys., 14, 395, 10.5194/npg-14-395-2007
Ott, 2004, A local ensemble Kalman filter for atmospheric data assimilation., Tellus, 56, 415, 10.3402/tellusa.v56i5.14462
Papadakis, N. , 2007: Assimilation de donnees images: Application au suivi de courbes et de champs de vecteurs. Ph.D. thesis, University of Rennes I, 240 pp.
Papoulis, 1995, Probability, Random Variables, and Stochastic Processes.
Pham, 2001, Stochastic methods for sequential data assimilation in strongly nonlinear systems., Mon. Wea. Rev., 129, 1194, 10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2
Pitt, 1999, Filtering via simulation: Auxilary particle filters., J. Amer. Stat. Assoc., 94, 590, 10.1080/01621459.1999.10474153
Snyder, 2008, Obstacles to high-dimensional particle filtering., Mon. Wea. Rev., 136, 4629, 10.1175/2008MWR2529.1
Spiller, 2008, Modified particle filter methods for assimilating Lagrangian data into a point-vortex model., Physica D, 237, 1498, 10.1016/j.physd.2008.03.023
van der Merwe, 2000, The unscented particle filter.
van Leeuwen, 2002, Ensemble Kalman filters: Sequential importance resampling and beyond.
van Leeuwen, 2003, A truly variance-minimizing filter for nonlinear dynamics., Mon. Wea. Rev., 131, 2071, 10.1175/1520-0493(2003)131<2071:AVFFLA>2.0.CO;2
van Leeuwen, 2003, Nonlinear ensemble data assimilation for the ocean.
van Leeuwen, 1996, Data assimilation and inverse methods in terms of a probabilistic formulation., Mon. Wea. Rev., 124, 2898, 10.1175/1520-0493(1996)124<2898:DAAIMI>2.0.CO;2
Vossepoel, 2007, Parameter estimation using a particle method: Inferring mixing coefficients from sea-level observations., Mon. Wea. Rev., 135, 1006, 10.1175/MWR3328.1
West, 1993, Approximating posterior distributions by mixtures., J. Roy. Stat. Soc., 55, 409
Wikle, 2007, A Bayesian tutorial for data assimilation., Physica D, 230, 1, 10.1016/j.physd.2006.09.017
Xiong, 2006, A note on the particle filter with posterior Gaussian resampling., Tellus, 58A, 456, 10.1111/j.1600-0870.2006.00185.x