Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự phân ly di truyền parapatric giữa các dòng tiến hóa sâu trong cua xanh Địa Trung Hải, Carcinus aestuarii (Brachyura, Portunoidea, Carcinidae), gây ra sự ngắt quãng hình thái học rõ rệt ở Địa Trung Hải phía Đông
Tóm tắt
Gần đây, các nghiên cứu di truyền quần thể về các loài hải sản trong khu vực Địa Trung Hải đã làm nổi bật các mô hình phân ly di truyền và sự ngắt quãng sinh địa lý, do sự tương tác giữa tác động của sự thay đổi khí hậu Pleistocen và các rào cản thủy văn hiện nay. Những yếu tố này đã hình thành rõ nét phân bố của các sinh vật biển và thành phần di truyền của chúng. Nghiên cứu hiện tại là một phần của nỗ lực đang diễn ra nhằm hiểu rõ hơn về sinh địa lý và lịch sử tiến hóa của cua xanh Địa Trung Hải, Carcinus aestuarii (Nardo, 1847), trên cơ sở phân bố qua các vùng biển Địa Trung Hải. Gần đây, đã phát hiện sự phân ly đáng kể giữa hai nhóm haplogroup (các loại di truyền I và II) của C. aestuarii ở eo biển Siculo-Tunisian, cho thấy một sự kiện phân ly vào đầu kỷ Pleistocen. Để xác định tốt hơn các mô hình sinh địa lý trong loài này, chúng tôi đã phân tích tổng cộng 263 cá thể từ 22 vị trí ở Địa Trung Hải bằng cách so sánh vùng 587 cặp bazơ của gen ty thể Cox1 (chuỗi oxidase cytochrome subunit 1). Tập dữ liệu xét nghiệm bao gồm cả các chuỗi mới được tạo ra (76) và các chuỗi đã được nghiên cứu trước đó (187). Kết quả của chúng tôi đã tiết lộ sự tồn tại của một haplogroup rất phân ly (loại di truyền III) ở phần đông bắc nhất của Biển Địa Trung Hải. Sự phân ly giữa loại III đặc biệt và tổ tiên chung của cả hai loại I và II tương ứng với thời kỳ đầu Pleistocen và trùng khớp với giai đoạn lịch sử tách biệt giữa loại I và II. Kết quả của chúng tôi cũng cho thấy sự phân ly di truyền mạnh mẽ giữa các vùng liền kề (tách biệt các vùng biển Aegean và Marmara khỏi vùng phân bố còn lại) và xác nhận một sự ngắt quãng sinh địa lý rõ rệt ở Địa Trung Hải phía Đông. Sự phân ly di truyền parapatric đã ghi nhận, với khả năng tồn tại của một vùng tiếp xúc giữa cả hai nhóm trong Biển Ionian và các sự khác biệt đáng kể về lịch sử nhân khẩu học, cho thấy tác động khả thi của các sự kiện khí hậu cổ đại, cũng như các quy trình đại dương học trong quá khứ và hiện tại, trong việc hình thành sự biến đổi di truyền của loài này. Những phát hiện của chúng tôi không chỉ cung cấp thêm chứng cứ cho lịch sử tiến hóa phức tạp của cua xanh ở Biển Địa Trung Hải mà còn nhấn mạnh tầm quan trọng của việc điều tra các khu vực ngoại vi trong vùng phân bố của loài để hiểu đầy đủ sự phân bố của sự đa dạng di truyền và giải mã các đơn vị di truyền tiềm ẩn cũng như các mô hình địa phương của sự đặc hữu.
Từ khóa
Tài liệu tham khảo
Maggs CA, Castilho R, Foltz D, Henzler C, Jolly MT, Kelly J, et al. Evaluating signatures of the glacial refugia for North Atlantic benthic marine taxa. Ecology. 2008;89:108–22.
Berg PR, Jentoft S, Star B, Ring KH, Knutsen H, Lien S, et al. Adaptation to low salinity promotes genomic divergence in Atlantic cod (Gadus morhua L.). Genome biol. Evolution. 2015;7(6):1644–63.
Godhe A, Egardt J, Kleinhans D, Sundqvist L, Hordoir R, Jonsson PR. Seascape analysis reveals regional gene flow patterns among populations of a marine planktonic diatom. Proc Royal Soc B. 2013;280:20131599.
Patarnello T, Volckaert FAM, Castilho R. Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographic break? Mol Ecol. 2007;16:4426–44.
Pérez-Losada M, Nolte MJ, Crandall KA, Shaw PW. Testing hypotheses of population structuring in the Northeast Atlantic Ocean and Mediterranean Sea using the common cuttlefish Sepia officinalis. Mol Ecol. 2007;16:2667–79.
Hewitt GM. Genetic consequences of climatic oscillations in the quaternary. Phil Trans R Soc B. 2004;359:183–95.
Galarza JA, Carreras-Carbonell J, Macpherson E, Pascual M, Roques S, Turner GF, et al. The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species. Proc Natl Acad Sci U S A. 2009;106:1473–8.
Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS. Chronology, causes and progression of the Messinian salinity crisis. Nature. 1999;400:652–5.
Lambeck K, Esat TM, Potter EK. Links between climate and sea levels for the past three million years. Nature. 2002;419:199–205.
Pannacciulli FG, Bishop JDD, Hawkins SJ. Genetic structure of populations of two species of Chthamalus (Crustacea: Cirripedia) in the Northeast Atlantic and Mediterranean. Mar Biol. 1997;128:73–82.
Reuschel S, Cuesta JA, Schubart CD. Marine biogeographic boundaries and human introduction along the European coast revealed by phylogeography of the prawn Palaemon elegans. Mol Phyl Evol. 2010;55:765–75.
Deli T, Chatti N, Said K, Schubart CD. Concordant patterns of mtDNA and nuclear phylogeographic structure reveal Pleistocene vicariant event in the green crab Carcinus aestuarii across the Siculo-Tunisian Strait. Mediterr Mar Sci. 2016;17(2):533–51.
Vermeij GJ. Biogeography and adaptation. Patterns of marine life. Cambridge: Massachusetts and London: Harvard University Press; 1987.
Thiede J. A glacial Mediterranean. Nature. 1978;276:680–3.
Arnaud-Haond S, Diaz Almela E, Teixeira S. Vicariance patterns in the Mediterranean Sea: east-west cleavage and low dispersal in the endemic seagrass Posidonia oceanica. J Biogeogr. 2007;14:963–76.
Sanna D, Cossu P, Dedola GL, Scarpa F, Maltagliati F, Castelli A, et al. Mitochondrial DNA reveals genetic structuring of Pinna nobilis across the Mediterranean Sea. PLoS One. 2013;8(6):e67372.
Cordero D, Peña JB, Saavedra C. Phylogeographic analysis of introns and mitochondrial DNA in the clam Ruditapes decussatus uncovers the effects of Pleistocene glaciations and endogenous barriers to gene flow. Mol Phylogenet Evol. 2014;71:274–87.
Pannacciulli FG, Maltagliati F, de Guttry C, Achituv Y. Phylogeography on the rocks: the contribution of current and historical factors in shaping the genetic structure of Chthamalus montagui (Crustacea, Cirripedia). PLoS One. 2017;12(6):e0178287.
Mori M, Mancon R, Fanciulli G. Notes on the reproductive biology of Carcinus aestuarii Nardo (Crustacea, Decapoda) from the lagoon of san Teodoro (island of Sardinia, Italy). Riv Idrobiol. 1990;29:763–74.
Behrens Yamada S, Hauck L. Field identification of the European green crab species: Carcinus maenas and Carcinus aestuarii. J Shellfish Res. 2001;20:905–12.
Mistri M, Rossi R, Fano EA. Structure and secondary production of a soft bottom macrobenthic community in a brackish lagoon (Sacca di Goro, northeastern Italy). Estuar Coast Shelf Sci. 2001;52:605–16.
Darling JA, Bagley JM, Roman J, Tepolt CK, Geller JB. Genetic patterns across multiple introductions of the globally invasive crab genus Carcinus. Mol Ecol. 2008;17:4992–5007.
Marino IAM, Pujolar JM, Zane L. Reconciling deep calibration and demographic history: Bayesian inference of post glacial colonization patterns in Carcinus aestuarii (Nardo, 1847) and C. maenas (Linnaeus, 1758). PLoS One. 2011;6(12):e28567.
Almaca C. Sur la distribution géographique du genre Carcinus Leach (Crustacea, Decapoda, Brachyoura). Revista Fac Ci Univ Lisboa. 1962;10:109–13.
Furota T, Watanabe S, Watanabe T, Akiyama S, Kinoshita K. Life history of the Mediterranean green crab, Carcinus aestuarii Nardo, in Tokyo Bay, Japan. Crustacean Res. 1999;28:5–15.
Geller JB, Walton E, Grosholz E, Ruiz GM. Cryptic invasions of the crab Carcinus detected by molecular phylogeny. Mol Ecol. 1997;6:256–62.
Watts RJ, Johnson MS. Estuaries, lagoons and embayments: habitats that enhance population subdivision in fishes. Mar Freshw Res. 2004;55:641–51.
Paula J. Larval retention and dynamics of the prawns Palaemon longirostris H. Milne Edwards and Crangon crangon Linnaeus (Decapoda, Caridea) in the Mira estuary, Portugal. Invertebr Reprod Dev. 1998;33:221–8.
Lundquist CJ, Oldman JW, Lewis MJ. Predicting suitability of cockle Austrovenus stutchburyi restoration sites using hydrodynamic models of larval dispersal. New Zeal J Mar Fresh. 2009;43:735–48.
Largier JL. Estuarine fronts: how important are they? Estuaries. 1993;16:1–11.
Cognetti G, Maltagliati F. Biodiversity and adaptive mechanisms in brackish water fauna. Mar Pollut Bull. 2000;40:7–14.
Ward RD, Woodwark M, Skibinski DOF. A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. J Fish Biol. 1994;44(2):213–32.
Pelc RA, Warner RR, Gaines SD. Geographical patterns of genetic structure in marine species with contrasting life histories. J Biogeogr. 2009;36:1881–90.
Marino IAM, Barbisan F, Gennari M, Giomi F, Beltramini M, Bisol PM, et al. Genetic heterogeneity in populations of the Mediterranean shore crab, Carcinus aestuarii (Decapoda, Portunidae), from the Venice lagoon. Estuar Coast Shelf Sci. 2010;87:135–44.
Ragionieri L, Schubart CD. Population genetics, gene flow and biogeographic boundaries of Carcinus aestuarii (Crustacea: Brachyura: Carcinidae) along the European Mediterranean coast. Biol J Linn Soc. 2013;109:771–90.
Deli T, Said K, Chatti N. Genetic differentiation among populations of the green crab Carcinus aestuarii (Brachyura, Carcinidae) from the eastern and western Mediterranean coasts of Tunisia. Acta Zool Bulg. 2015;67(3):327–35.
Deli T, Said K, Chatti N. Morphological differentiation among geographically close populations of the green crab Carcinus aestuarii Nardo, 1847 (Brachyura, Carcinidae) from the Tunisian coast. Crustaceana. 2014;87(3):257–83.
Svitoch AA, Selivanov AO, Yanina TA. The Pont-Caspian and Mediterranean basins in the Pleistocene (paleogeography and correlation). Oceanology. 2000;40:868–81.
Nikula R, Väinölä R. Phylogeography of Cerastoderma glaucum (Bivalvia: Cardiidae) across Europe: a major break in the eastern Mediterranean. Mar Biol. 2003;143:339350.
Costagliola D, Robertson DR, Guidetti P. Evolution of coral reef fish Thalassoma pavo spp. (Labridae). 2. Evolution of the eastern Atlantic species. Mar Biol. 2004;144:377–83.
Domingues VS, Bucciarelli G, Almada VC, Bernardi G. Historical colonization and demography of the Mediterranean damselfish, Chromis chromis. Mol Ecol. 2005;14:4051–63.
Chevolot M, Hoarau G, Rijnsdorp AD, Stam W, Olsen J. Phylogeography and population structure of thornback rays (Raja clavata L., Rajidae). Mol Ecol. 2006;15:3693–705.
Peijnenburg KT, Fauvelot C, Breeuwer JA, Menken SB. Spatial and temporal genetic structure of the planktonic Sagitta setosa (Chaetognatha) in European seas as revealed by mitochondrial and nuclear DNA markers. Mol Ecol. 2006;15:3319–38.
Zulliger DE, Tanner S, Ruch M, Ribi G. Genetic structure of the high dispersal Atlanto-Mediterranean Sea star Astropecten aranciacus revealed by mitochondrial DNA sequences and microsatellite loci. Mar Biol. 2009;156:597–610.
Borrero-Pérez GH, Gonzalez-Wangüemert M, Marcos C, Pérez-Ruzafa A. Phylogeography of the Atlanto-Mediterranean Sea cucumber Holothuria (Holothuria) mammata: the combined effects of historical processes and current oceanographical pattern. Mol Ecol. 2011;20:1964–75.
Schubart CD. Mitochondrial DNA and decapod phylogenies: the importance of pseudogenes and primer optimization. In: Martin JW, Crandall KA, Felder DL, editors. Crustacean issues 18: decapod crustacean Phylogenetics. Boca Raton, Florida: Taylor and Francis/CRC Press; 2009. p. 47–65.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3(5):294–9.
Technelysium Pty Ltd. Chromas lite ver. 2.1.1. 2012. Available from: http://www.technelysium.com.au/chromas_lite.html.
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetic analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.
Nei M. Molecular evolutionary genetics. New York: Columbia University Press; 1987.
Tajima F. Evolutionary relationships of DNA sequences in finite populations. Genetics. 1983;105:437–60.
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–2.
Poon AF, Frost SD, Pond SL. Detecting signatures of selection from DNA sequences using Datamonkey. Methods Mol Biol. 2009;537:163–83.
Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3:418–26.
Clement M, Posada D, Crandall K. TCS: A computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–60.
Hudson RR. Gene genealogies and the coalescent process. In: Futuyama D, Antonovics JD, editors. Oxford surveys in evolutionary biology. Oxford: Oxford University Press; 1990. p. 1–44.
Templeton AR, Crandall KA, Sing CF. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992;132:619–33.
Pons O, Petit RJ. Estimation, variance and optimal sampling of gene diversity. Theor Appl Genet. 1995;90:462–70.
Pons O, Petit RJ. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics. 1996;144:1237–45.
Petit RJ, Hampe A, Cheddadi R. Climate changes and tree phylogeography in the Mediterranean. Taxon. 2005;54:877–85.
Demeusy N. Recherches sur la mue de puberté du décapode brachyoure Carcinus maenas Linné. Arch Zool Exp Gen. 1958;95:253–492.
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969–73.
Posada D, Crandall KA. Modeltest: testing the model of DNA substitution. Bioinformatics. 1998;14:817–8.
Yule GU. A mathematical theory of evolution, based on the conclusions of Dr. J. C. Wills, F. R. S. Philos Trans R Soc Lond B. 1924;213:21–87.
Nee S, May RM, Harvey PH. The reconstructed evolutionary process. Philos Trans R Soc Lond B. 1994;344:305–11.
Gernhard T. The conditioned reconstructed process. J Theor Biol. 2008;253:769–78.
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:e88.
Kingman JFC. The coalescent. Stoch Process Their Appl. 1982;13:235–48.
Rambaut A, Drummond AJ. Tracer v 1.4.8. Institute of evolutionary biology: University of Edinburg; 2007. Available from: http://beast.community/tracer
Kass RE, Raftery AE. Bayes factors. J Am Stat Assoc. 1995;90:773–95.
Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on mathematics in the life sciences. Amer Math Soc. 1986;17:57–86.
Burridge CP, Craw D, Fletcher D, Waters JM. Geological dates and molecular rates: fish DNA sheds light on time dependency. Mol Biol Evol. 2008;25:624–33.
Rambaut A. FigTree v1.3.1. 2009. Computer program available at: http: //tree.bio.ed.ac.uk/software/figtree/.
Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–91.
Excoffier L, Laval G, Schneider S. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online. 2005;(1):47–50.
Tajima F, Nei M. Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol. 1984;1:269–85.
Narum SR. Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet. 2006;7(5):783–7.
Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4(1):1–9.
Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27:209–20.
Miller MP. Alleles in space: computer software for the joint analysis of Interindividual spatial and genetic information. J Hered. 2005;96:722–4.
Dupanloup I, Schneider S, Excoffier L. A simulated approach to define the genetic structure of populations. Mol Ecol. 2002;11:2571–81.
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.
Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997;147:915–25.
Ramos-Onsins SE, Rozas J. Statistical properties of new neutrality tests against population growth. Mol Biol Evol. 2002;19:2092–100.
Harpending HC. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol. 1994;66(4):591–600.
Drummond AJ, Rambaut A, Shapiro B, Pybus OG. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol. 2005;22:1185–92.
Hulva P, Fornuskova A, Chudarkova A, Evin A, Allegrini B, Benda P, et al. Mechanisms of radiation in a bat group from the genus Pipistrellus inferred by phylogeography, demography and population genetics. Mol Ecol. 2010;19:5417–31.
Grant WS. Problems and cautions with sequence mismatch analysis and Bayesian skyline plots to infer historical demography. J Heredity. 2015;106:333–46.
Yamada SB. Global invader: the European green crab. Corvallis: Oregon Seagrant; 2000.
Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am. 1994;87:651–701.
Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, et al. Marine ecoregions of the world: a bioregionalization of coast and shelf areas. Bioscience. 2007;57:573–83.
Almaça C. Evolutionary and zoogeographical remarks on the Mediterranean fauna of the brachyuran crabs. In: Moraitou-Apostolopoulou M, Kirostis V, editors. Mediterranean marine ecosystems. New York: Plenum Press; 1985. p. 347–66.
Hofricher AA. Das Mittelmeer-Fauna, Flora, Ökologie Band I. Berlin: Spektrum Akademischer Verlag, Heidelberg; 2002.
Aksu AE, Hiscott RN, Mudie PJ, Rochon A, Kaminski MA, Abrajano T, et al. Persistent Holocene outflow from the Black Sea to the eastern Mediterranean contradicts Noah's flood hypothesis. GSA Today. 2002;12(5):4–10.
Kalkan E, Kurtuluş A, Maraci Ö, Bilgin R. Is the Bosphorus Strait a barrier to gene flow for the Mediterranean mussel, Mytilus galloprovincialis (Lamarck, 1819)? Mar Biol Res. 2011;7(7):690–700.
Fratini S, Ragionieri L, Deli T, Harrer A, Marino IAM, Cannicci S, et al. Unravelling population genetic structure with mitochondrial DNA in a notional panmictic coastal crab species: sample size makes the difference. BMC Evol Biol. 2016;16:150.
Fairbanks RG. A 17,000-year glacio-eustatic sea-level record: influence of global melting rates on the younger Dryas event and deep-ocean circulation. Nature. 1989;342:637–42.
Svitoch AA, Selivanov AO, Yanina TA. Paleohydrology of the Black Sea Pleistocene basins. Water Resour. 2000;27(6):594–603.
Zaitsev Y, Mamaev VO. Biological diversity in the Black Sea: a study of change and decline, Black Sea environmental series, vol. 3. New York: United Nations Publishing; 1997. p. 208.
Luttikhuizen PC, van Bleijswijk JCJ, Peijnenburg KTCA, van der Veer HW. Phylogeography of the common shrimp, Crangon crangon (L.) across its distribution range. Mol Phylogenet Evol. 2008;46:1015–30.
Riccardi AC. IUGS ratified ICS recommendation on redefinition of Pleistocene and formal definition of base quaternary. International Union of Geological Sciences; 2009.
Hewitt GM. The genetic legacy of the quaternary ice ages. Nature. 2000;405:907–13.
Barton NH, Hewitt GM. Analysis of hybrid zones. Annu Rev Ecol Syst. 1985;16:113–48.
Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, et al. The last glacial maximum. Science. 2009;325:710–4.
Lykousis V. Sea-level changes and shelf break prograding sequences during the last 400 ka in the Aegean margins: subsidence rates and palaeogeographic implications. Cont Shelf Res. 2009;29:2037–44.
Perissoratis C, Conispoliatis N. The impacts of sea-level changes during latest Pleistocene and Holocene times on the morphology of the Ionian and Aegean seas (SE alpine Europe). Mar Geol. 2003;196:146–56.
Shemesh E, Huchon D, Simon-Blecher N, Achituv Y. The distribution and molecular diversity of the eastern Atlantic and Mediterranean chthamalids (Crustacea, Cirripedia). Zool Scr. 2009;38:365–78.
Malanotte-Rizzoli P, Bergamasco A. The circulation of the eastern Mediterranean. Part I Oceanol Acta. 1989;12:335–51.
Roussenov V, Stanev E, Artale V, Pinardi N. A seasonal model of the Mediterranean Sea general circulation. J Geophys Res. 1995;100:13515–38.
Millot C. Circulation in the Mediterranean Sea: evidences, debates and unanswered questions. Sci. 2005;69:5–21.
Kalkan E, Karhan SÜ, Bilgin R, Hemond EM. The Turkish straits system as a phylogeographic boundary – a literature review. In: Özsoy E, Çağatay MN, Balkıs NE, Nu B, Öztürk B, editors. The sea of Marmara; marine biodiversity, fisheries, conservation and governance. Istanbul, Turkey: Turkish Marine Research Foundation (TUDAV), Publication No:42; 2016. p. 550–69.
Slatkin M. Gene flow and the geographic structure of natural populations. Science. 1987;236(4803):787–92.
Rizzo C, Cammarata M, Di Carlo M, Pancucci A, Parrinello N. RAPD profiles distinguish Paracentrotus lividus populations living in a stressing environment (Amvrakikos gulf, Greece). Russ J Genet. 2009;45:499–503.
Penant G, Aurelle D, Feral J-P, Chenuil A. Planktonic larvae do not ensure gene flow in the edible sea urchin Paracentrotus lividus. Mar Ecol Prog Ser. 2013;480:155–70.
Skliris N, Sofianos SS, Gkanasos A, Axaopoulos P, Mantziafou A, Vervatis V. Long-term sea surface temperature variability in the Aegean Sea. Adv Oceanogr Limnol. 2011;2(2):125–39.
Aksu AE, Yaşar D, Mudie PJ, Gillespie H. Late Glacial-Holocene paleoclimatic and paleoceanographic evolution of the Aegean Sea: micropaleontological and stable isotopic evidence. Mar Micropaleontol. 1995;25(1):1–28.
Grant WS, Spies IB, Canino MF. Biogeographic evidence for selection on mitochondrial DNA in North Pacific walleye pollock Theragra chalcogramma. J Hered. 2006;97:571–80.
Meijer PT, Krijgsman W. A quantitative analysis of the dessication and re-filling of the Mediterranean during the Messinian salinity crisis. Earth Planet Sci Lett. 2005;240:510–20.
Avise JC. Phylogeography: the history and formation of species. Cambridge: Harvard University Press; 2000.