Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tối ưu tham số của quá trình vi khoan bằng laser Nd:YAG trên vật liệu nhôm oxit sử dụng phương pháp tích hợp RSM-ANN-GA
Tóm tắt
Hiện nay, trong các ngành công nghiệp chế biến tinh vi, việc vi khoan các vật liệu kỹ thuật tiên tiến đang trở thành một nhu cầu cấp thiết vì nó có nhiều ứng dụng trong các lĩnh vực ô tô, điện tử, y sinh và hàng không vũ trụ. Bài báo này đề cập đến việc mô hình hóa và nghiên cứu tối ưu hóa sai lệch kích thước của các rãnh vi hình vuông trong quá trình vi khoan bằng laser trên vật liệu gốm nhôm oxit (Al2O3) sử dụng laser Nd:YAG xung, với các tham số quá trình bao gồm áp suất không khí, dòng điện của đèn, tần số xung, độ rộng xung và tốc độ cắt. Ba mươi hai bộ thí nghiệm vi khoan laser dựa trên thiết kế tổ hợp trung tâm (CCD) đã được thực hiện, và phương pháp bề mặt đáp ứng (RSM), mạng nơ-ron nhân tạo (ANN) và thuật toán di truyền (GA) đã được áp dụng cho mô hình toán học và tối ưu hóa đa phản hồi. Hiệu suất của mô hình ANN dự đoán dựa trên kiến trúc 5-8-8-3 cho kết quả lỗi tối thiểu (MSE = 0.000099) và cho thấy độ tin cậy cao với tỷ lệ sai số thấp hơn 3% so với tập dữ liệu kết quả thực nghiệm. Mô hình ANN kết hợp với GA đã dẫn đến sai lệch tối thiểu về chiều rộng trên, chiều rộng dưới và độ sâu lần lượt là − 0.0278 mm, 0.0102 mm và − 0.0308 mm, tương ứng với các tham số quá trình vi khoan laser tối ưu như áp suất không khí là 1.2 kgf/cm2, dòng điện đèn là 19.5 Amp, tần số xung là 4 kHz, độ rộng xung là 6% và tốc độ cắt là 24 mm/s. Cuối cùng, các kết quả đã được xác nhận thông qua việc thực hiện một thử nghiệm xác nhận.
Từ khóa
#vi khoan laser; nhôm oxit; tối ưu hóa tham số; mạng nơ-ron nhân tạo; thuật toán di truyền; phương pháp bề mặt đáp ứngTài liệu tham khảo
Behera RR, Ghadai RK, Kalita K, Banerjee S (2016) Simultaneous prediction of delamination and surface roughness in drilling GFRP composite using ANN. Int J Plast Technol 20:424–450
Biswas R, Kuar AS, Biswas SK, Mitra S (2010) Artificial neural network modelling of Nd:YAG laser microdrilling on titanium nitride—alumina composite. Proc Inst Mech Eng Part B J Eng Manuf 224:473–482
Biswas R, Kuar AS, Mitra S (2015) Process optimization in Nd:YAG laser microdrilling of alumina–aluminium interpenetrating phase composite. J Mater Res Technol 4:323–332
Brihmat-Hamadi F, Amara EH, Lavisse L, Jouvard JM, Cicala E, Kellou H (2017) Surface laser marking optimization using an experimental design approach. Appl Phys A 123:230-1-13
Campanelli SL, Casalino G, Ludovico AD, Bonserio C (2013) An artificial neural network approach for the control of the laser milling process. Int J Adv Manuf Technol 66:1777–1784
Chryssolouris G (1991) Laser machining: theory and practice. Springer, New York
Ciurana J, Arias G, Ozel T (2009) Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel. Mater Manuf Process 24:358–368
Dahbi S, Ezzine L, Moussami HEL (2017) Modeling of cutting performances in turning process using artificial neural networks. Int J Eng Bus Manag 9:1–13
Darwish SMH, Saied MH, Ahmed N, Al-Ahmari AM (2017a) Laser beam micro-milling of micro-channels in aerospace alloys. Springer, Singapore
Darwish S, Ahmed N, Alahmari AM, Mufti NA (2017b) A study of micro-channel size and spatter dispersion for laser beam micro-milling. J Mater Manuf Process 32:171–184
Das SR, Dhupal D, Kumar A (2015) Study of surface roughness and flank wear in hard turning of AISI 4140 steel with coated ceramic inserts. J Mech Sci Technol 29:4329–4340
Davim JP (2001) A note on the determination of optimal cutting conditions for surface finish obtained in turning using design of experiments. J Mater Process Technol 116:305–308
Dhar SK, Kuar AS, Mitra S (2008) An artificial neural network approach on parametric optimization of laser micro-machining of die-steel. Int J Adv Manuf Technol 39:39–46
Dhupal D, Doloi B, Bhattacharyya B (2007) Optimization of process parameters of Nd:YAG laser microgrooving of Al2TiO5 ceramic material by response surface methodology and artificial neural network algorithm. Proc Inst Mech Eng Part B J Eng Manuf 221:1341–1351
Dhupal D, Doloi B, Bhattacharyya B (2008a) Parametric analysis and optimization of Nd:YAG laser micro-grooving of aluminum titanate (Al2TiO5) ceramics. Int J Adv Manuf Technol 36:883–893
Dhupal D, Doloi B, Bhattacharyya B (2008b) Pulsed Nd:YAG laser turning of micro-groove on aluminum oxide ceramic (Al2O3). Int J Mach Tools Manuf 48:236–248
Dhupal D, Doloi B, Bhattacharyya B (2009) Modeling and optimization on Nd:YAG laser turned micro-grooving of cylindrical ceramic material. Opt Lasers Eng 47:917–925
Doloi B, Dhupal D, Bhattacharyya B (2007) Investigations into Nd:YAG laser micro-grooving on alumina. In: Proceedings of international conference on advanced manufacturing technologies, Durgapur, India, pp 125–135
Farooq K, Kar A (1998) Removal of laser-melted material with an assist gas. J Appl Phys 83:7467–7473
Giorleo L, Ceretti E, Giardini C (2016) Optimization of laser micromachining process for biomedical device fabrication. Int J Adv Manuf Technol 82:901–907
Hafezalkotob A, Hafezalkotob A (2016) Extended MULTIMOORA method based on Shannon entropy weight for materials selection. J Ind Eng Int 12:1–13
Hao X, Yan H, Han J, Yao C, He N (2018) Experimental research on pulse laser assisted micro turning of ZrO2 ceramic. Int J Nanomanuf 14:165–176
Haykin SO (2002) Neural networks: a comprehensive foundation. Pearson, Singapore
Kalita K, Shivakoti I, Ghadai RK (2017) Optimizing process parameters for laser beam micro-marking using genetic algorithm and particle swarm optimization. Mater Manuf Process 32:1101–1108
Khamel S, Ouelaa N, Bouacha K (2012) Analysis and prediction of tool wear, surface roughness and cutting forces in hard turning with CBN tool. J Mech Sci Technol 26:3605–3616
Kibria G, Doloi B, Bhattacharyya B (2010) Experimental analysis on Nd:YAG laser micro-turning of alumina ceramic. Int J Adv Manuf Technol 50:643–650
Kibria G, Doloi B, Bhattacharyya B (2012) Optimisation of Nd:YAG laser micro-turning process using response surface methodology. Int J Precis Technol 3:14–36
Kibria G, Doloi B, Bhattacharyya B (2013a) Predictive model and process parameters optimization of Nd:YAG laser micro-turning of ceramics. Int J Adv Manuf Technol 65:213–229
Kibria G, Doloi B, Bhattacharyya B (2013b) Investigation and analysis on pulsed Nd:YAG laser micro-turning process of aluminium oxide (Al2O3) ceramic at various laser defocusing conditions. Int J Adv Manuf Technol 76:17–27
Kibria G, Doloi B, Bhattacharyya B (2014) Modelling and optimization of Nd:YAG laser micro-turning process during machining of aluminum oxide (Al2O3) ceramics using response surface methodology and artificial neural network. Manuf Rev 1:1–8
Krimpenis AA, Fountas NA, Ntalianis I, Vaxevanidis NM (2014) CNC micromilling properties and optimization using genetic algorithm. Int J Adv Manuf Technol 70:157–171
Kuar AS, Biswas P, Mitra S, Biswas R (2008) Experimental investigation of Nd:YAG laser micro-grooving operation of alumina workpiece using RSM. Int J Mater Struct Integrity 1:355–370
Kuar AS, Acherjee B, Ganguly D, Mitra S (2012) Optimization of Nd:YAG laser parameters for microdrilling of alumina with multiquality characteristics via Grey–Taguchi method. Mater Manuf Process 27:329–336
Kumar A, Soota T, Kumar J Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology. J Ind Eng Int. https://doi.org/10.1007/s40092-018-0264-8
Kumar V, Kumar V, Jangra KK (2015) An experimental analysis and optimization of machining rate and surface characteristics in WEDM of Monel-400 using RSM and desirability approach. J Ind Eng Int 11:297–307
Kuo CFJ, Huy QV, Dewantoro G, Luen LW (2012) Multi-objective optimization of laser-scribed micro grooves on AZO conductive thin film using Data Envelopment Analysis. Opt Laser Technol 44:1959–1970
Madić M, Radovanović M, Gostimirović M (2015) ANN modeling of kerf transfer in CO2 laser cutting and optimization of cutting parameters using Monte Carlo method. Int J Ind Eng Comput 6:33–42
Markopoulos AP, Georgiopoulos S, Manolakos DE (2016) On the use of back propagation and radial basis function neural networks in surface roughness prediction. J Ind Eng Int 12:389–400
Mishra S, Yadava V (2013) Modeling and optimization of laser beam percussion drilling of thin aluminum sheet. Opt Laser Technol 48:461–474
Moghaddam MA, Kolahan F (2016) Application of orthogonal array technique and particle swarm optimization approach in surface roughness modification when face milling AISI1045 steel parts. J Ind Eng Int 12:199–209
Mohammed MK, Umer U, Al-Ahmari A (2017) Optimization of laser micro milling of alumina ceramic using radial basis functions and MOGA-II. Int J Adv Manuf Technol 91:2017–2029
Montgomery DC (2004) Design and analysis of experiments. Wiley, New York
Mukherjee R, Goswami D, Chakraborty S (2013) Parametric optimization of Nd:YAG laser beam machining process using artificial bee colony algorithm. J Ind Eng. https://doi.org/10.1155/2013/570250
Nandi S, Kuar AS (2015) Parametric optimisation of Nd:YAG laser micro-drilling of alumina using NSGA II. Int J Mach Mach Mater 17:1–21
Olsen FO, Alting L (1995) Pulsed laser materials processing, ND-YAG versus CO2 lasers. CIRP Ann Manuf Technol 44:141–145
Palanisamy P, Rajendran I, Shanmugasundaram S (2007) Optimization of machining parameters using genetic algorithm and experimental validation for end-milling operations. Int J Adv Manuf Technol 32:644–655
Peter J, Doloi B, Bhattacharyya B (2013) Analysis of Nd:YAG laser marking characteristics on alumina ceramics. J Inst Eng (India) Ser C 94:287–292
Qian X, Ma Y, Feng H Collaboration space division in collaborative product development based on a genetic algorithm. J Ind Eng Int. https://doi.org/10.1007/s40092-018-0257-7
Shaik JH, Srinivas J (2017) Optimal selection of operating parameters in end milling of Al-6061 work materials using multi-objective approach. Mech Adv Mater Mod Process 3:1–11
Shivade AS, Shinde VD (2014) Multi-objective optimization in WEDM of D3 tool steel using integrated approach of Taguchi method & Grey relational analysis. J Ind Eng Int 10:149–162
Shivakoti I, Pradhan BB, Diyaley S, Ghadai RK, Kalita K (2017) Fuzzy TOPSIS-based selection of laser beam micro-marking process parameters. Arab J Sci Eng 42:4825–4831
Somashekhar KP, Ramachandran N, Mathew J (2010) Optimization of material removal rate in micro-EDM using artificial neural network and genetic algorithms. Mater Manuf Processes 25:467–475
Vosniakos GC, Krimpenis A (2002) Optimisation of multiple tool CNC rough machining of a hemisphere as a genetic algorithm paradigm application. Int J Adv Manuf Technol 20:727–734
Wang W, Chen J, Li D, Feng D, Tu Y (2016) Modelling and optimisation of a femtosecond laser micro-machining process for micro-hole array products. Int J Adv Manuf Technol 82:1293–1303
Yang K, Xia Y, Li L, He N, Zhang Y, Zhang T, Wang Y (2018) Experimental study on hybrid machining of laser irradiation and grinding for sharpening of a CVD diamond micro-milling tool. Int J Adv Manuf Technol 96:327–336
Zhang G, Jiang C, Zhang S, Wang Y, Chen X, Yu L (2015) An experimental investigation of laser assisted drilling process. Mater Res Innov 19:S8-889–S8-894