Parallel Asynchronous Global Search and the Nested Optimization Scheme

Yaroslav D. Sergeyev1, Vladimir A. Grishagin2
1ISI-CNR, c/o DEIS, University of Calabria, Rende (CS), Italy
2Software Department, University of Nizhni Novgorod, Nizhni Novgorod, Russia

Tóm tắt

In this paper, a parallel asynchronous information algorithm for solving multidimensional Lipschitz global optimization problems, where times for evaluating the objective function can be different from point to point, is proposed. This method uses the nested optimization scheme and a new parallel asynchronous global optimization method for solving core univariate subproblems generated by the nested scheme. The properties of the scheme related to parallel computations are investigated. Global convergence conditions for the new method and theoretical conditions of speed up, which can be reached by using asynchronous parallelization in comparison with the pure sequential case, are established. Numerical experiments comparing sequential, synchronous, and asynchronous algorithms are also reported.

Tài liệu tham khảo

D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Prentice-Hall, Englewood Cliffs, 1989.

I. M. Bomze, T. Csendes, R. Horst, and P. M. Pardalos, eds., Developments in Global Optimization, Kluwer Academic Publ., Dordrecht, 1997.

C. R. Carr and C. W. Howe, Quantitative Decision Procedures in Management and Economics. Deterministic Theory and Applications, McGraw Hill, New York, 1964.

L. C. W. Dixon and G. P. Szego, eds., Towards Global Optimization, Vol. 2. North-Holland, Amsterdam, 1978.

C. A. Floudas and P. M. Pardalos, eds., State of the Art in Global Optimization, Kluwer Academic Publ., Dordrecht, 1996.

V. P. Gergel and Ya. D. Sergeyev, Sequential and parallel global optimization algorithms using derivatives, Computers Math. Appl., 37, 163–189 (1999).

V. A. Grishagin, On convergence conditions for a class of global search algorithms, Proc. 3rd All-Union Seminar Numerical Methods Nonlinear Programming, Kharkov, 82–84 (1979) (in Russ.).

V. A. Grishagin, Ya. D. Sergeyev, and R. G. Strongin, Parallel characteristic algorithms for solving problems of global optimization, J. Global Optimization 10, 185–206 (1997).

P. Hansen and B. Jaumard, Lipschitz optimization, in Handbook of Global Optimization, R. Horst and P. M. Pardalos, eds., Kluwer Academic Publ., Dordrecht, 1995.

E. M. T. Hendrix, Ph.D. thesis, Wageningen, 1998.

R. Horst and H. Tuy, Global Optimization Deterministic Approaches, 3rd ed., Springer Verlag, Berlin, 1996.

A. Migdalas, P. M. Pardalos, and S. Støroy, eds., Parallel Computing in Optimization, Kluwer Academic Publ., Dordrecht, 1996.

P. M. Pardalos, A. T. Phillips, and J. B. Rosen, Topics in Parallel Computing in Mathematical Programming, Science Press, 1992.

A. H. G. Rinnooy Kan and G. H. Timmer, Global optimization, Optimization (G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, eds.), North-Holland, Amsterdam, 1989.

R. G. Strongin, Numerical Methods on Multiextremal Problems, Nauka, Moscow, 1978 (in Russ.).

R. G. Strongin and Ya. D. Sergeyev, Global multidimensional optimization on parallel computer, Parallel Comput. 18, 1259–1273 (1992).

A Törn and A. Žilinskas, Global Optimization, Lecture Notes in Computer Science, Springer Verlag, New York, 1989, p. 350.