PFEM-based modeling of industrial granular flows

Springer Science and Business Media LLC - Tập 1 Số 1 - Trang 47-70 - 2014
Juan Cante1, César Dávalos2, J.A. Hernández1, J Oliver3, Pär Jonsén4, Gustaf Gustafsson4, Hans‐Åke Häggblad4
1E.T.S. d'Enginyeries Industrial i Aeronáutica de Terrassa, Technical University of Catalonia (UPC), Campus Terrassa UPC, Mòdul TR5, c/Colom 11, 08222 , Terrassa, Spain
2International Center for Numerical Methods in Engineering (CIMNE), C/. Gran Capitan s/n, 08034 , Barcelona, Spain
3E.T.S. d'Enginyers de Camins, Canals i Ports de Barcelona, Technical University of Catalonia (UPC), Campus Nord UPC, Mòdul C1, C/. Jordi Girona 1-3, 08034 , Barcelona, Spain
4Division Mechanics of Solid Materials, Luleå University of Technology, Luleå, 97187, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ravenet J (1981) Silos problems. Bulk Solids Handl 1(4):667–679

Nedderman RM (2005) Statics and kinematics of granular materials. Cambridge University Press, New York

Zhang X, Krabbenhoft K, Pedroso D, Lyamin A, Sheng D, Da Silva MV, Wang D (2013) Particle finite element analysis of large deformation and granular flow problems. Comput Geotech 54: 133–142

Chen JF, Rotter JM, Ooi JY, Zhong Z (2007) Correlation between the flow pattern and wall pressures in a full scale experimental silo. Eng Struct 29:2308–2320

Clermont B, de Haas B (2010) Optimization of mill performance by using online ball and pulp measurements. J South Afr Inst Min Metall 110:8

Tano K (2005) Continuous monitoring of mineral processes with special focus on tumbling mills: a multivariate approach. Doctoral thesis, Luleå University of Technology

Si G, Cao H, Zhang Y, Jia L (2009) Experimental investigation of load behaviour of an industrial scale tumbling mill using noise and vibration signature techniques. Miner Eng 22:1289–1298

Jonsén P, Pålsson BI, Tano K, Berggren A (2011) Prediction of mill structure behaviour in a tumbling mill. Miner Eng 24:236–244

Jonsen P, Stener J, Palsson B, Haggblad H (2013) Validation of tumbling mill charge-induced torque as predicted by simulations. Miner Metall Process J 30:220–225

Duran J (2009) Sands, powders, and grains: an introduction to the physics of granular materials (partially ordered systems). Springer, New York

Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

Idelsohn SR, Oñate E, Pin FD (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Method Eng 61:964–989

Edelsbrunner H, Mücke EP (1994) Three-dimensional alpha shapes. ACM Trans Graph 13:43–72

Oñate E, Rossi R, Idelsohn SR, Butler KM (2010) Melting and spread of polymers in fire with the particle finite element method. Int J Numer Method Eng 81:1046–1072

Oñate E, Idelsohn S, Celigueta M, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput Method Appl Mech Eng 197:1777–1800

Carbonell J, Oñate E, Suárez B (2009) Modeling of ground excavation with the particle finite-element method. J Eng Mech 136: 455–463

Cante JC, Riera MD, Oliver J, Prado JM, Isturiz A, Gonzalez C (2011) Flow regime analyses during the filling stage in powder metallurgy processes: experimental study and numerical modelling. Granul Matter 13(1):79–92

Oliver J, Cante JC, Weyler R, González C, Hernandez J (2007) Particle finite element methods in solid mechanics problems. In: Oñate E, Owen R (eds) Computational plasticity, vol 7. Springer, Netherlands, pp 87–103

Larese A, Rossi R, Oñate R, Idelsohn SR (2012) A coupled PFEM-Eulerian approach for the solution of porous FSI problems. Comput Mech 50:805–819

Harr M (2002) Stress distribution, in the Civil Engineering handbook, 2nd edn. CRC Press, Boca Raton

Dohrmann CR, Bochev PB (2004) A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int J Numer Method Fluids 46:183–201

Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

Huang S (1995) Continuum theory of plasticit. Wiley, New York

Hernández J, Oliver J, Cante J, Weyler R (2011) Numerical modeling of crack formation in powder forming processes. Int J Solid Struct 48:292–316

Hernández J, Oliver J, Cante J, Weyler R (2012) Finite element modelling of ejection cracks in powder metallurgy die compaction processes: case study. Powder Metall 55:36–44

Gustafsson G (2012) Mechanical characterization and modelling of iron ore pellets. Doctoral thesis, Division of Mechanics of Solid Materials, Luleå University of Technology, Sweden

Gustafsson G, Häggblad HÅ, Oldenburg M (2007) Smoothed particle hydrodynamic simulation of iron ore pellets flow. In: AIP conference proceedings, p 1483

Rycroft C, Kamrin K, Bazant M (2009) Assessing continuum postulates in simulations of granular flow. J Mech Phys Solid 57: 828–839

Oliver J, Huespe AE, Blanco S, Linero DL (2006) Stability and robustness issues in numerical modeling of material failure with the strong discontinuity approach. Comput Method Appl Mech Eng 195:7093–7114

Oliver J, Huespe AE, Cante JC (2008) An implicit/explicit integration scheme to increase computability of non-linear material and contact/friction problems. Comput Method Appl Mech Eng 197:1865–1889

Oliver J, Hartmann S, Cante JC, Weyler R, Hernández JA (2009) A contact domain method for large deformation frictional contact problems. Part 1: theoretical basis. Comput Method Appl Mech Eng 198:2591–2606

Hartmann S, Oliver J, Weyler R, Cante JC, Hernández JA (2009) A contact domain method for large deformation frictional contact problems. Part 2: numerical aspects. Comput Method Appl Mech Eng 198:2607–2631

Rotter J, Ooi J, Chen J, Tiley P, Mackintosh I, Bennett F (1995) Flow pattern measurement in full scale silos. The University of Edinburgh, Edinburgh, Scotland

Knupp PM (2003) Algebraic mesh quality metrics for unstructured initial meshes. Finite Elements Anal Design 39:217–241

Cleary PW (2001) Charge behaviour and power consumption in ball mills: sensitivity to mill operating conditions, liner geometry and charge composition. Int J Miner Process 63:79–114

Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, New York