BÀI VIẾT GÓC: Các yếu tố tăng trưởng và cytokine trong quá trình lành vết thương

Wound Repair and Regeneration - Tập 16 Số 5 - Trang 585-601 - 2008
Stephan Barrientos1,2, Olivera Stojadinović1, Michael S. Golinko3, Harold Brem3, Marjana Tomic‐Canic4,1
1Tissue Engineering, Repair and Regeneration Program, Hospital for Special Surgery at Weill Medical College of Cornell University, New York, New York,
2University of Rochester School of Medicine and Dentistry, Rochester, New York
3Wound Healing Laboratory, Columbia University College of Physicians and Surgeons, New York, and
4Department of Dermatology, Weill Medical College of Cornell University, New York

Tóm tắt

TÓM TẮT

Quá trình lành vết thương là một quá trình phức tạp đa tế bào, được bảo tồn qua tiến hóa, mà trong da, nhằm mục đích phục hồi hàng rào. Quá trình này liên quan đến sự phối hợp của nhiều loại tế bào khác nhau bao gồm tế bào keratinocyte, tế bào fibroblast, tế bào nội mô, đại thực bào và tiểu cầu. Sự di chuyển, thâm nhập, phát triển và phân hóa của các tế bào này sẽ culminate trong một phản ứng viêm, sự hình thành mô mới và cuối cùng là khép vết thương. Quá trình phức tạp này được thực hiện và điều chỉnh bởi một mạng lưới tín hiệu cũng phức tạp không kém, liên quan đến nhiều yếu tố tăng trưởng, cytokine và chemokine. Đặc biệt quan trọng là các gia đình yếu tố tăng trưởng biểu bì (EGF), yếu tố tăng trưởng chuyển đổi beta (TGF-β), yếu tố tăng trưởng fibroblast (FGF), yếu tố tăng trưởng nội mô mạch (VEGF), yếu tố kích thích đại thực bào bạch cầu trung tính (GM-CSF), yếu tố tăng trưởng tiểu cầu (PDGF), yếu tố tăng trưởng mô liên kết (CTGF), gia đình interleukin (IL), và gia đình yếu tố hoại tử khối u-alpha (TNF-α). Hiện tại, bệnh nhân được điều trị bằng ba yếu tố tăng trưởng: PDGF-BB, bFGF và GM-CSF. Chỉ có PDGF-BB đã hoàn thành thành công các thử nghiệm lâm sàng ngẫu nhiên tại Hoa Kỳ. Với liệu pháp gen hiện đang trong thử nghiệm lâm sàng và việc phát hiện ra các polyme phân hủy sinh học, lưới fibrin và collagen người, phục vụ như các hệ thống cung cấp tiềm năng, các yếu tố tăng trưởng khác có thể sớm có sẵn cho bệnh nhân. Bài đánh giá này sẽ tập trung vào các vai trò cụ thể của những yếu tố tăng trưởng và cytokine này trong quá trình lành vết thương.

Từ khóa


Tài liệu tham khảo

10.1046/j.1523-1747.2001.01327.x

Kupper TS, 1986, The human burn wound as a primary source of interleukin‐1 activity, Surgery, 100, 409

Murphy GM, 1989, Local increase in interleukin‐1‐like activity following UVB irradiation of human skin in vivo, Photodermatol, 6, 268

10.1016/S0091-6749(05)80143-5

10.1084/jem.174.4.821

Chan LS, 1992, Human dermal fibroblast interleukin‐1 receptor antagonist (IL‐1ra) and interleukin‐1 beta (IL‐1 beta) mRNA and protein are co‐stimulated by phorbol ester, implication for a homeostatic mechanism, 99, 315

10.1111/1523-1747.ep12343392

10.1002/eji.1830270908

10.4049/jimmunol.159.12.6203

Murphy JE, 2000, Interleukin‐1 and cutaneous inflammation, a crucial link between innate and acquired immunity, 114, 602

10.1016/S0300-483X(98)00088-2

10.2741/2559

Raja, 2007, Wound re‐epithelialization, modulating keratinocyte migration in wound healing, 12, 2849

Abraham J, 1996, The molecular and cellular biology of wound repair

10.1097/00005373-199607000-00029

10.1126/science.3492044

10.1016/S0094-1298(20)32471-8

Sasaki T., 1992, The effects of basic fibroblast growth factor and doxorubicin on cultured human skin fibroblasts, relevance to wound healing, 19, 664

Shoyab M, 1989, Structure and function of human amphiregulin, a member of the epidermal growth factor family, 243, 1074

10.1074/jbc.275.8.5748

10.1016/S0021-9258(17)32127-0

10.1038/328817a0

Chiang CP, 1986, Opposite and selective effects of epidermal growth factor and human platelet transforming growth factor‐beta on the production of secreted proteins by murine 3T3 cells and human fibroblasts, J Biol Chem, 261, 10478, 10.1016/S0021-9258(18)67407-1

10.1242/dev.02030

Shing Y, 1993, Betacellulin, a mitogen from pancreatic beta cell tumors, 259, 1604

Higashiyama S, 2008, Membrane‐anchored growth factors, the epidermal growth factor family, beyond receptor ligands, 99, 214

10.1038/msb4100014

10.1111/1523-1747.ep12264708

10.1111/1523-1747.ep12259731

10.1074/jbc.M509771200

10.4049/jimmunol.175.7.4662

10.1242/jcs.02772

10.1126/science.276.5309.75

10.1038/265421a0

10.1002/(SICI)1097-4652(199808)176:2<255::AID-JCP4>3.0.CO;2-N

10.1002/(SICI)1097-0029(19981201)43:5<444::AID-JEMT10>3.0.CO;2-C

10.1083/jcb.151.2.209

10.1111/1523-1747.ep12472297

10.1111/1523-1747.ep12876204

Reiss M, 1987, Regulation of growth and differentiation of human keratinocytes by type beta transforming growth factor and epidermal growth factor, Cancer Res, 47, 6705

10.1146/annurev.bi.62.070193.002503

10.1038/jid.1963.1

10.1016/S0021-9258(19)38983-5

10.1083/jcb.146.999.243

10.1002/jcb.240450407

10.1084/jem.163.5.1319

10.1097/00000658-198812000-00019

10.1073/pnas.90.14.6786

10.1016/S0167-4781(00)00002-6

10.2119/2006-00054.Brem

10.1046/j.1524-475X.1996.40404.x

10.1046/j.1524-475X.1997.50106.x

10.1056/NEJM198907133210203

10.1111/j.1524-4725.1992.tb03514.x

Viswanathan V., 2006, A phase III study to evaluate the safety and efficacy of recombinant human epidermal growth factor (REGEN‐D 150) in healing diabetic foot ulcers, Wounds, 18, 186

10.1016/j.biomaterials.2007.10.012

10.1097/01.sap.0000198731.12407.0c

10.1002/bjs.4019

Pittelkow MR, 1993, Autonomous growth of human keratinocytes requires epidermal growth factor receptor occupancy, Cell Growth Differ, 4, 513

Rappolee DA, 1988, Wound macrophages express TGF‐alpha and other growth factors in vivo, analysis by mRNA phenotyping, 241, 708

10.1016/S0923-1811(00)00141-9

Li Y, 2006, Transforming growth factor‐alpha, a major human serum factor that promotes human keratinocyte migration, 126, 2096

10.1111/1523-1747.ep12345083

10.1084/jem.167.2.670

Barrandon Y, 1987, Cell migration is essential for sustained growth of keratinocyte colonies, the roles of transforming growth factor-alpha and epidermal growth factor, 50, 1131

10.1046/j.1524-475x.2001.00386.x

10.1016/0092-8674(93)90227-H

10.1016/0092-8674(93)90228-I

10.1074/jbc.270.52.31189

10.1073/pnas.90.9.3889

Dlugosz AA, 1995, Autocrine transforming growth factor alpha is dispensible for v‐rasHa‐induced epidermal neoplasia, potential involvement of alternate epidermal growth factor receptor ligands, 55, 1883

10.1016/S0304-419X(97)00024-3

10.1242/jcs.02346

10.1080/08977190701773070

10.1001/archsurg.1996.01430180086018

10.1016/j.yexcr.2007.03.013

10.1111/j.0022-202X.2004.22323.x

Sato M, 1999, In vivo introduction of the interleukin 6 gene into human keratinocytes, induction of epidermal proliferation by the fully spliced form of interleukin 6, but not by the alternatively spliced form, 291, 400

10.1677/erc.0.0070165

Ornitz DM., 2000, FGFs, heparan sulfate and FGFRs, complex interactions essential for development, 22, 108

Clark RAF., 1996, The molecular and cellular biology of wound repair

10.1111/j.1743-6109.2006.00143.x

10.1016/S0379-0738(00)00218-8

10.1111/j.1743-6109.2006.00120.x

10.2337/diacare.18.1.64

10.1097/00000658-199210000-00002

10.1073/pnas.89.15.6896

10.1074/jbc.271.25.15292

10.1074/jbc.274.18.12827

10.1074/jbc.M606878200

10.1046/j.1524-475x.2001.00347.x

10.1111/j.1600-0625.1997.tb00155.x

Eppley BL, 2004, Platelet quantification and growth factor analysis from platelet‐rich plasma, implications for wound healing, 114, 1502

10.1006/jsre.1997.5178

10.1002/biof.5520160104

10.1038/sj.jid.5700951

10.1097/01.PRS.0000153037.12900.45

10.1002/path.2113

10.1002/jcp.1041480119

Mitra R, 2004, Suppression of macrophage function in AK‐5 tumor transplanted animals, role of TGF-beta1, 91, 189

10.1038/334260a0

Goldberg MT, 2007, TNF‐alpha suppresses alpha‐smooth muscle actin expression in human dermal fibroblasts, an implication for abnormal wound healing, 127, 2645

10.1074/jbc.272.32.19738

10.1074/jbc.271.18.10917

10.1016/S1043-4666(03)00253-9

Zeng G, 1996, Endogenous TGF‐beta activity is modified during cellular aging, effects on metalloproteinase and TIMP-1 expression, 228, 271

10.1016/j.arcmed.2006.04.010

10.1016/j.bbrc.2007.06.121

10.1242/jcs.02352

10.1073/pnas.90.11.5237

10.1038/sj.onc.1202161

10.1038/12971

Zambruno G, 1995, Transforming growth factor‐beta 1 modulates beta 1 and beta 5 integrin receptors and induces the de novo expression of the alpha v beta 6 heterodimer in normal human keratinocytes, implications for wound healing, 129, 853

10.1038/ki.1997.185

10.1016/j.bjps.2006.05.007

10.1097/01.prs.0000182343.99694.28

10.1016/S0002-9440(10)63066-0

10.1097/00000658-199508000-00006

10.1016/S0012-1606(05)80018-1

10.1097/00000658-199407000-00003

Cordeiro MF, 1999, Transforming growth factor‐beta1, ‐beta2, and ‐beta3 in vivo, effects on normal and mitomycin C-modulated conjunctival scarring, 40, 1975

Roberts AB, 1986, Transforming growth factor type beta, rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro, 83, 4167

Cox DA, 1992, Wound healing in aged animals—effects of locally applied transforming growth factor beta 2 in different model systems, EXS, 61, 287

Shah M, 1995, Neutralisation of TGF‐beta 1 and TGF‐beta 2 or exogenous addition of TGF‐beta 3 to cutaneous rat wounds reduces scarring, J Cell Sci, 108, 985, 10.1242/jcs.108.3.985

10.1001/archsurg.135.10.1154

10.3109/08977199109000279

Graycar JL, 1989, Human transforming growth factor‐beta 3, recombinant expression, purification, and biological activities in comparison with transforming growth factors-beta 1 and -beta 2, 3, 1977

Schmid P, 1993, TGF‐beta s and TGF‐beta type II receptor in human epidermis, differential expression in acute and chronic skin wounds, 171, 191

10.1046/j.1524-475X.1997.50108.x

10.1016/S0945-053X(00)00097-4

10.1016/0140-6736(93)91085-Z

10.1046/j.1524-475X.1995.30207.x

Thomson AW, 2003, The cytokine handbook

10.1046/j.1523-1747.1999.00558.x

10.1046/j.1365-2443.1998.00174.x

10.1093/emboj/20.19.5361

10.1046/j.1523-1747.1998.00407.x

10.1074/jbc.M100780200

10.1006/excr.2000.5117

10.1002/path.853

10.1182/blood-2004-04-1485

10.2353/ajpath.2006.060120

Li L, 2007, Growth factor regulation of hyaluronan synthesis and degradation in human dermal fibroblasts, importance of hyaluronan for the mitogenic response of PDGF-BB, 404, 327

10.1046/j.1524-475x.2000.00013.x

Vogt PM, 1998, Determination of endogenous growth factors in human wound fluid, temporal presence and profiles of secretion, 102, 117

10.1152/physrev.1999.79.4.1283

10.1172/JCI3058

10.1016/0014-5793(94)01458-D

10.1126/science.277.5323.242

Sundberg C, 1997, Tumor cell and connective tissue cell interactions in human colorectal adenocarcinoma. Transfer of platelet‐derived growth factor‐AB/BB to stromal cells, Am J Pathol, 151, 479

Rabhi‐Sabile S, 1996, Proteolysis of thrombospondin during cathepsin‐G‐induced platelet aggregation, functional role of the 165-kDa carboxy-terminal fragment, 386, 82

10.1016/S0022-4804(02)96485-1

10.1016/j.biomaterials.2006.07.023

Rhee S, 2006, P21‐activated kinase 1, convergence point in PDGF- and LPA-stimulated collagen matrix contraction by human fibroblasts, 172, 423

10.1002/jcp.20154

Margolis DJ, 2004, Clinical protocol. Phase I trial to evaluate the safety of H5.020CMV.PDGF‐b and limb compression bandage for the treatment of venous leg ulcer, trial A, 15, 1003

Margolis DJ, 2000, Clinical protocol, phase I trial to evaluate the safety of H5.020CMV.PDGF-B for the treatment of a diabetic insensate foot ulcer, 8, 480

2007 Phase 2b Study of GAM501 in the Treatment of Diabetic Ulcers of the Lower Extremities (MATRIX). Available at:http://clinicaltrials.gov/ct2/show/NCT00493051?term=Leigh's+Disease&rank=24

10.2353/ajpath.2006.051251

Nissen NN, 1998, Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing, Am J Pathol, 152, 1445

Banks RE, 1998, Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets, significance for VEGF measurements and cancer biology, 77, 956

10.1182/blood.V90.10.4153

10.1091/mbc.3.2.211

10.1016/j.freeradbiomed.2005.11.016

10.1126/science.1312256

10.1074/jbc.271.2.603

10.1016/0006-291X(92)90483-2

10.1055/s-0038-1657611

10.1016/S0006-291X(05)81201-X

10.1073/pnas.90.19.8915

10.1016/S0021-9258(18)47116-5

10.1038/376062a0

10.1038/376066a0

10.1016/S0008-6363(97)00177-6

Wang H, 1998, Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells, role of flt-1, 83, 832

Katoh O, 1995, Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation, Cancer Res, 55, 5687

10.1074/jbc.271.46.29393

Suzuma K, 1998, Hypoxia and vascular endothelial growth factor stimulate angiogenic integrin expression in bovine retinal microvascular endothelial cells, Invest Ophthalmol Vis Sci, 39, 1028

Senger DR, 1996, Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin, Am J Pathol, 149, 293

Morbidelli L, 1996, Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium, Am J Physiol, 270, H411

10.1016/0006-291X(92)92277-5

Goto F, 1993, Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels, Lab Invest, 69, 508

10.1038/sj.onc.1201033

10.1074/jbc.273.46.30336

10.1074/jbc.270.21.12607

10.1084/jem.176.5.1375

10.1006/bbrc.1998.8286

10.1073/pnas.94.2.663

10.1161/01.CIR.90.2.649

10.1161/01.CIR.92.1.11

10.1159/000386224

10.1111/1523-1747.ep12286453

Knighton DR, 1981, Regulation of wound‐healing angiogenesis‐effect of oxygen gradients and inspired oxygen concentration, Surgery, 90, 262

10.1096/fj.03-1179fje

10.2337/diab.40.10.1305

10.2337/diacare.17.5.382

10.1016/S0008-6363(96)00272-6

10.1016/S0741-5214(98)70141-7

10.1007/s004030050307

Mawson AR, 1999, Enhancing host resistance to pressure ulcers, a new approach to prevention, 22, 433

10.1093/ageing/20.4.255

10.1111/j.1475-097X.1989.tb01007.x

10.1038/sc.1995.88

10.1097/00005344-199601000-00015

10.1016/S0741-5214(95)70272-5

Bauters C, 1994, Physiological assessment of augmented vascularity induced by VEGF in ischemic rabbit hindlimb, Am J Physiol, 267, H1263

Takeshita S, 1994, Intramuscular administration of vascular endothelial growth factor induces dose‐dependent collateral artery augmentation in a rabbit model of chronic limb ischemia, Circulation, 90, II228

10.1172/JCI117018

10.1016/S0002-9440(10)63754-6

10.1084/jem.20021244

Carmeliet P., 2000, VEGF gene therapy, stimulating angiogenesis or angioma-genesis?, 6, 1102

10.1161/01.CIR.97.12.1114

10.1016/S0002-9440(10)64255-1

10.1096/fj.99-1049com

10.1016/S0002-9440(10)61765-8

10.1093/emboj/16.13.3898

10.1084/jem.20030361

10.1073/pnas.95.24.14389

10.1016/S0002-9440(10)65582-4

10.1038/ni1013

10.1074/jbc.271.30.17629

Pipp F, 2003, VEGFR‐1‐selective VEGF homologue PlGF is arteriogenic, evidence for a monocyte-mediated mechanism, 92, 378

10.1038/nm740

10.1038/87904

Cianfarani F, 2006, Placenta growth factor in diabetic wound healing, altered expression and therapeutic potential, 169, 1167

Nagy JA, 2003, VEGF‐A(164/165) and PlGF, roles in angiogenesis and arteriogenesis, 13, 169

10.1091/mbc.4.6.637

10.1128/MCB.19.4.2958

10.1093/oxfordjournals.jbchem.a022414

10.1016/j.yexcr.2007.09.001

10.1111/1523-1747.ep12363389

Mann A, 2001, Keratinocyte‐derived granulocyte‐macrophage colony stimulating factor accelerates wound healing, stimulation of keratinocyte proliferation, granulation tissue formation, and vascularization, 117, 1382

10.1046/j.1463-1326.2001.00142.x

10.1038/337471a0

10.1016/S0140-6736(97)04495-4

10.1046/j.1468-3083.2002.00526.x

10.1111/j.1365-2133.2005.06925.x

10.1385/MO:18:3:231

10.1159/000076487

10.1016/S0002-9610(00)00536-5

Robson MC, 2000, Sequential cytokine therapy for pressure ulcers, clinical and mechanistic response, 231, 600

10.1056/NEJM199909023411006

10.1074/jbc.M001253200

10.1016/0923-1811(95)00418-1

10.1097/01.shk.0000223120.26394.7d

Brauchle M, 1994, Large induction of keratinocyte growth factor expression by serum growth factors and pro‐inflammatory cytokines in cultured fibroblasts, Oncogene, 9, 3199

Kristensen M, 1993, Localization of tumour necrosis factor‐alpha (TNF‐alpha) and its receptors in normal and psoriatic skin, epidermal cells express the 55-kD but not the 75-kD TNF receptor, 94, 354

10.1172/JCI115480

10.1095/biolreprod46.5.772

Rawdanowicz TJ, 1994, Matrix metalloproteinase production by cultured human endometrial stromal cells, identification of interstitial collagenase, gelatinase-A, gelatinase-B, and stromelysin-1 and their differential regulation by interleukin-1 alpha and tumor necrosis factor-alpha, 79, 530

Agren MS, 1992, Collagenase in wound healing, effect of wound age and type, 99, 709

10.1046/j.1524-475X.1996.40307.x

10.1046/j.1523-1747.1998.00113.x

DiPietro LA, 1995, Modulation of JE/MCP‐1 expression in dermal wound repair, Am J Pathol, 146, 868

Wetzler C, 2000, Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse, prolonged persistence of neutrophils and macrophages during the late phase of repair, 115, 245

10.1016/S0002-9440(10)61717-8

10.1016/S0002-9440(10)65699-4

10.1046/j.1524-475x.2001.00028.x

10.1634/stemcells.19-5-388

10.1189/jlb.68.1.1

10.1084/jem.182.1.219

10.1016/0014-5793(92)80677-9

10.1111/1523-1747.ep12616634

10.1006/jsre.2000.5892

10.1046/j.1524-475x.2000.00216.x

10.1006/jsre.1998.5345

10.1111/j.1365-2133.2007.08240.x

Salcedo R, 1999, Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells, in vivo neovascularization induced by stromal-derived factor-1alpha, 154, 1125

Grunewald M, 2006, VEGF‐induced adult neovascularization, recruitment, retention, and role of accessory cells, 124, 175

10.1242/jcs.02303

10.1172/JCI29710

10.1172/JCI32169

Brem H, 2003, Clinical efficacy and mechanism of bilayered living human skin equivalent (HSE) in treatment of diabetic foot ulcers, Surg Technol Int, 11, 23

10.1001/archderm.138.8.1079

Falanga V, 2002, Wounding of bioengineered skin, cellular and molecular aspects after injury, 119, 653