BÀI VIẾT GÓC: Các yếu tố tăng trưởng và cytokine trong quá trình lành vết thương
Tóm tắt
Quá trình lành vết thương là một quá trình phức tạp đa tế bào, được bảo tồn qua tiến hóa, mà trong da, nhằm mục đích phục hồi hàng rào. Quá trình này liên quan đến sự phối hợp của nhiều loại tế bào khác nhau bao gồm tế bào keratinocyte, tế bào fibroblast, tế bào nội mô, đại thực bào và tiểu cầu. Sự di chuyển, thâm nhập, phát triển và phân hóa của các tế bào này sẽ culminate trong một phản ứng viêm, sự hình thành mô mới và cuối cùng là khép vết thương. Quá trình phức tạp này được thực hiện và điều chỉnh bởi một mạng lưới tín hiệu cũng phức tạp không kém, liên quan đến nhiều yếu tố tăng trưởng, cytokine và chemokine. Đặc biệt quan trọng là các gia đình yếu tố tăng trưởng biểu bì (EGF), yếu tố tăng trưởng chuyển đổi beta (TGF-β), yếu tố tăng trưởng fibroblast (FGF), yếu tố tăng trưởng nội mô mạch (VEGF), yếu tố kích thích đại thực bào bạch cầu trung tính (GM-CSF), yếu tố tăng trưởng tiểu cầu (PDGF), yếu tố tăng trưởng mô liên kết (CTGF), gia đình interleukin (IL), và gia đình yếu tố hoại tử khối u-alpha (TNF-α). Hiện tại, bệnh nhân được điều trị bằng ba yếu tố tăng trưởng: PDGF-BB, bFGF và GM-CSF. Chỉ có PDGF-BB đã hoàn thành thành công các thử nghiệm lâm sàng ngẫu nhiên tại Hoa Kỳ. Với liệu pháp gen hiện đang trong thử nghiệm lâm sàng và việc phát hiện ra các polyme phân hủy sinh học, lưới fibrin và collagen người, phục vụ như các hệ thống cung cấp tiềm năng, các yếu tố tăng trưởng khác có thể sớm có sẵn cho bệnh nhân. Bài đánh giá này sẽ tập trung vào các vai trò cụ thể của những yếu tố tăng trưởng và cytokine này trong quá trình lành vết thương.
Từ khóa
Tài liệu tham khảo
Kupper TS, 1986, The human burn wound as a primary source of interleukin‐1 activity, Surgery, 100, 409
Murphy GM, 1989, Local increase in interleukin‐1‐like activity following UVB irradiation of human skin in vivo, Photodermatol, 6, 268
Chan LS, 1992, Human dermal fibroblast interleukin‐1 receptor antagonist (IL‐1ra) and interleukin‐1 beta (IL‐1 beta) mRNA and protein are co‐stimulated by phorbol ester, implication for a homeostatic mechanism, 99, 315
Murphy JE, 2000, Interleukin‐1 and cutaneous inflammation, a crucial link between innate and acquired immunity, 114, 602
Raja, 2007, Wound re‐epithelialization, modulating keratinocyte migration in wound healing, 12, 2849
Abraham J, 1996, The molecular and cellular biology of wound repair
Sasaki T., 1992, The effects of basic fibroblast growth factor and doxorubicin on cultured human skin fibroblasts, relevance to wound healing, 19, 664
Shoyab M, 1989, Structure and function of human amphiregulin, a member of the epidermal growth factor family, 243, 1074
Chiang CP, 1986, Opposite and selective effects of epidermal growth factor and human platelet transforming growth factor‐beta on the production of secreted proteins by murine 3T3 cells and human fibroblasts, J Biol Chem, 261, 10478, 10.1016/S0021-9258(18)67407-1
Shing Y, 1993, Betacellulin, a mitogen from pancreatic beta cell tumors, 259, 1604
Higashiyama S, 2008, Membrane‐anchored growth factors, the epidermal growth factor family, beyond receptor ligands, 99, 214
Reiss M, 1987, Regulation of growth and differentiation of human keratinocytes by type beta transforming growth factor and epidermal growth factor, Cancer Res, 47, 6705
Viswanathan V., 2006, A phase III study to evaluate the safety and efficacy of recombinant human epidermal growth factor (REGEN‐D 150) in healing diabetic foot ulcers, Wounds, 18, 186
Pittelkow MR, 1993, Autonomous growth of human keratinocytes requires epidermal growth factor receptor occupancy, Cell Growth Differ, 4, 513
Rappolee DA, 1988, Wound macrophages express TGF‐alpha and other growth factors in vivo, analysis by mRNA phenotyping, 241, 708
Li Y, 2006, Transforming growth factor‐alpha, a major human serum factor that promotes human keratinocyte migration, 126, 2096
Barrandon Y, 1987, Cell migration is essential for sustained growth of keratinocyte colonies, the roles of transforming growth factor-alpha and epidermal growth factor, 50, 1131
Dlugosz AA, 1995, Autocrine transforming growth factor alpha is dispensible for v‐rasHa‐induced epidermal neoplasia, potential involvement of alternate epidermal growth factor receptor ligands, 55, 1883
Sato M, 1999, In vivo introduction of the interleukin 6 gene into human keratinocytes, induction of epidermal proliferation by the fully spliced form of interleukin 6, but not by the alternatively spliced form, 291, 400
Ornitz DM., 2000, FGFs, heparan sulfate and FGFRs, complex interactions essential for development, 22, 108
Clark RAF., 1996, The molecular and cellular biology of wound repair
Eppley BL, 2004, Platelet quantification and growth factor analysis from platelet‐rich plasma, implications for wound healing, 114, 1502
Mitra R, 2004, Suppression of macrophage function in AK‐5 tumor transplanted animals, role of TGF-beta1, 91, 189
Goldberg MT, 2007, TNF‐alpha suppresses alpha‐smooth muscle actin expression in human dermal fibroblasts, an implication for abnormal wound healing, 127, 2645
Zeng G, 1996, Endogenous TGF‐beta activity is modified during cellular aging, effects on metalloproteinase and TIMP-1 expression, 228, 271
Zambruno G, 1995, Transforming growth factor‐beta 1 modulates beta 1 and beta 5 integrin receptors and induces the de novo expression of the alpha v beta 6 heterodimer in normal human keratinocytes, implications for wound healing, 129, 853
Cordeiro MF, 1999, Transforming growth factor‐beta1, ‐beta2, and ‐beta3 in vivo, effects on normal and mitomycin C-modulated conjunctival scarring, 40, 1975
Roberts AB, 1986, Transforming growth factor type beta, rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro, 83, 4167
Cox DA, 1992, Wound healing in aged animals—effects of locally applied transforming growth factor beta 2 in different model systems, EXS, 61, 287
Shah M, 1995, Neutralisation of TGF‐beta 1 and TGF‐beta 2 or exogenous addition of TGF‐beta 3 to cutaneous rat wounds reduces scarring, J Cell Sci, 108, 985, 10.1242/jcs.108.3.985
Graycar JL, 1989, Human transforming growth factor‐beta 3, recombinant expression, purification, and biological activities in comparison with transforming growth factors-beta 1 and -beta 2, 3, 1977
Schmid P, 1993, TGF‐beta s and TGF‐beta type II receptor in human epidermis, differential expression in acute and chronic skin wounds, 171, 191
Thomson AW, 2003, The cytokine handbook
Li L, 2007, Growth factor regulation of hyaluronan synthesis and degradation in human dermal fibroblasts, importance of hyaluronan for the mitogenic response of PDGF-BB, 404, 327
Vogt PM, 1998, Determination of endogenous growth factors in human wound fluid, temporal presence and profiles of secretion, 102, 117
Sundberg C, 1997, Tumor cell and connective tissue cell interactions in human colorectal adenocarcinoma. Transfer of platelet‐derived growth factor‐AB/BB to stromal cells, Am J Pathol, 151, 479
Rabhi‐Sabile S, 1996, Proteolysis of thrombospondin during cathepsin‐G‐induced platelet aggregation, functional role of the 165-kDa carboxy-terminal fragment, 386, 82
Rhee S, 2006, P21‐activated kinase 1, convergence point in PDGF- and LPA-stimulated collagen matrix contraction by human fibroblasts, 172, 423
Margolis DJ, 2004, Clinical protocol. Phase I trial to evaluate the safety of H5.020CMV.PDGF‐b and limb compression bandage for the treatment of venous leg ulcer, trial A, 15, 1003
Margolis DJ, 2000, Clinical protocol, phase I trial to evaluate the safety of H5.020CMV.PDGF-B for the treatment of a diabetic insensate foot ulcer, 8, 480
2007 Phase 2b Study of GAM501 in the Treatment of Diabetic Ulcers of the Lower Extremities (MATRIX). Available at:http://clinicaltrials.gov/ct2/show/NCT00493051?term=Leigh's+Disease&rank=24
Nissen NN, 1998, Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing, Am J Pathol, 152, 1445
Banks RE, 1998, Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets, significance for VEGF measurements and cancer biology, 77, 956
Wang H, 1998, Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells, role of flt-1, 83, 832
Katoh O, 1995, Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation, Cancer Res, 55, 5687
Suzuma K, 1998, Hypoxia and vascular endothelial growth factor stimulate angiogenic integrin expression in bovine retinal microvascular endothelial cells, Invest Ophthalmol Vis Sci, 39, 1028
Senger DR, 1996, Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin, Am J Pathol, 149, 293
Morbidelli L, 1996, Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium, Am J Physiol, 270, H411
Goto F, 1993, Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels, Lab Invest, 69, 508
Knighton DR, 1981, Regulation of wound‐healing angiogenesis‐effect of oxygen gradients and inspired oxygen concentration, Surgery, 90, 262
Mawson AR, 1999, Enhancing host resistance to pressure ulcers, a new approach to prevention, 22, 433
Bauters C, 1994, Physiological assessment of augmented vascularity induced by VEGF in ischemic rabbit hindlimb, Am J Physiol, 267, H1263
Takeshita S, 1994, Intramuscular administration of vascular endothelial growth factor induces dose‐dependent collateral artery augmentation in a rabbit model of chronic limb ischemia, Circulation, 90, II228
Carmeliet P., 2000, VEGF gene therapy, stimulating angiogenesis or angioma-genesis?, 6, 1102
Pipp F, 2003, VEGFR‐1‐selective VEGF homologue PlGF is arteriogenic, evidence for a monocyte-mediated mechanism, 92, 378
Cianfarani F, 2006, Placenta growth factor in diabetic wound healing, altered expression and therapeutic potential, 169, 1167
Nagy JA, 2003, VEGF‐A(164/165) and PlGF, roles in angiogenesis and arteriogenesis, 13, 169
Mann A, 2001, Keratinocyte‐derived granulocyte‐macrophage colony stimulating factor accelerates wound healing, stimulation of keratinocyte proliferation, granulation tissue formation, and vascularization, 117, 1382
Robson MC, 2000, Sequential cytokine therapy for pressure ulcers, clinical and mechanistic response, 231, 600
Brauchle M, 1994, Large induction of keratinocyte growth factor expression by serum growth factors and pro‐inflammatory cytokines in cultured fibroblasts, Oncogene, 9, 3199
Kristensen M, 1993, Localization of tumour necrosis factor‐alpha (TNF‐alpha) and its receptors in normal and psoriatic skin, epidermal cells express the 55-kD but not the 75-kD TNF receptor, 94, 354
Rawdanowicz TJ, 1994, Matrix metalloproteinase production by cultured human endometrial stromal cells, identification of interstitial collagenase, gelatinase-A, gelatinase-B, and stromelysin-1 and their differential regulation by interleukin-1 alpha and tumor necrosis factor-alpha, 79, 530
Agren MS, 1992, Collagenase in wound healing, effect of wound age and type, 99, 709
DiPietro LA, 1995, Modulation of JE/MCP‐1 expression in dermal wound repair, Am J Pathol, 146, 868
Wetzler C, 2000, Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse, prolonged persistence of neutrophils and macrophages during the late phase of repair, 115, 245
Salcedo R, 1999, Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells, in vivo neovascularization induced by stromal-derived factor-1alpha, 154, 1125
Grunewald M, 2006, VEGF‐induced adult neovascularization, recruitment, retention, and role of accessory cells, 124, 175
Brem H, 2003, Clinical efficacy and mechanism of bilayered living human skin equivalent (HSE) in treatment of diabetic foot ulcers, Surg Technol Int, 11, 23
Falanga V, 2002, Wounding of bioengineered skin, cellular and molecular aspects after injury, 119, 653