Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A
Tóm tắt
Từ khóa
Tài liệu tham khảo
Visser W, Scheffers A, Batenburg-van der Vegte WH, van Dijken J: Oxygen Requirements of Yeasts. Appl Environ Microbiol. 1990, 56 (12): 3785-3792.
Furukawa K, Heinzle E, Dunn IJ: Influence of Oxygen on the Growth of Saccharomyces cerevisiae in Continuous Culture. Biotechnol Bioeng. 1983, 25: 2293-2317. 10.1002/bit.260251003
Oura E: The effect of aeration on the growth energetics and biochemical composition of baker's yeast. 1972, PhD thesis. Helsinki University, Helsinki, Finland
Sauer U: Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol. 2006, 2: 62- 10.1038/msb4100109
van Maris AJA, Konings WN, van Dijken JP, Pronk JT: Microbial export of lactic and 3-hydroxypropanoic acid: implications for inductrial fermentation processes. Metab Eng. 2004, 6: 245-255. 10.1016/j.ymben.2004.05.001
Bakker BM, Overkamp KM, van Maris AJA, Kötter P, Luttik MAH, van Dijken JP, Pronk JT: Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev. 2001, 25: 15-37. 10.1111/j.1574-6976.2001.tb00570.x
Rigoulet M, Aguilaniu H, Avéret N, Bunoust O, Camougrand N, Grandier-Vazeille X, Larsson C, Pahlman IL, Manon S, Gustafsson L: Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Mol Cell Biochem. 2004, 256-257: 73-81. 10.1023/B:MCBI.0000009888.79484.fd
Weusthuis RA, Visser W, Pronk JT, Scheffers WA, van Dijken JP: Effects of oxygen limitation on sugar metabolism in yeasts – a continuous-culture study of the Kluyver effect. Microbiology. 1994, 140: 703-715.
Franzèn CJ: Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae. Yeast. 2003, 20: 117-132. 10.1002/yea.956
Verduyn C, Postma E, Scheffers WA, van Dijken JP: Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol. 1990, 136: 395-403.
Snoek I, Steensma Y: Factors involved in anaerobic growth of Saccharomyces cerevisiae. Yeast. 2007, 24: 1-10. 10.1002/yea.1430
Rieger M, Käppeli O, Fiechter A: The Role of Limited Respiration in the Incomplete Oxidation of Glucose by Saccharomyces cerevisiae. J Gen Microbiol. 1983, 129: 653-661.
van Hoek P, van Dijken JP, Pronk JT: Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae. Enzyme Microb Technol. 2000, 26: 724-736. 10.1016/S0141-0229(00)00164-2
Westergaard SL, Oliveira AP, Bro C, Olsson L, Nielsen J: A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnol Bioeng. 2007, 96: 134-145. 10.1002/bit.21135
Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J: Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. PNAS. 2007, 104: 2402-2407. 10.1073/pnas.0607469104
Frick O, Wittmann C: Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb Cell Fact. 2005, 4: 30-46. 10.1186/1475-2859-4-30
Gombert AK, dos Santos MM, Christensen B, Nielsen J: Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol. 2001, 183: 1441-1451. 10.1128/JB.183.4.1441-1451.2001
Fiaux J, Ìakar PZ, Sonderegger M, Wüthrich K, Szyperski T, Sauer U: Metabolic-Flux Profiling of the Yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell. 2003, 2: 170-180. 10.1128/EC.2.1.170-180.2003
Stephanopoulos GN, Aristidou AA, Nielsen J: Metabolic Engineering: Principles and Methodologies. 1998, Academic Press, San Diego, California
Schuetz R, Kuepfer L, Sauer U: Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol. 2007, 3: 119- 10.1038/msb4100162
Szyperski T, Glaser RW, Hochuli M, Fiaux J, Sauer U, Bailey JE, Wüthrich K: Bioreaction network topology and metabolic flux ratio analysis by biosynthetic fractional 13C labelling and two-dimensional NMR spectroscopy. Metab Eng. 1999, 1: 189-197. 10.1006/mben.1999.0116
Fischer E, Zamboni N, Sauer U: High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal Biochem. 2004, 325: 308-316. 10.1016/j.ab.2003.10.036
Blank LM, Kuepfer L, Sauer U: Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol. 2005, 6: R49- 10.1186/gb-2005-6-6-r49
Blank LM, Lehmbeck F, Sauer U: Metabolic-flux and network analysis of fourteen hemiascomycetous yeasts. FEMS Yeast Res. 2005, 5: 545-558. 10.1016/j.femsyr.2004.09.008
Fredlund E, Blank LM, Schnürer J, Sauer U, Passoth V: Oxygen- and glucose-dependent regulation of central carbon metabolism in Pichia anomala. Appl Environ Microbiol. 2004, 70: 5905-5911. 10.1128/AEM.70.10.5905-5911.2004
Duarte NC, Herrgård MJ, Palsson BO: Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 2004, 14: 1298-1309. 10.1101/gr.2250904
Förster J, Famili I, Fu P, Palsson BO, Nielsen J: Genome-Scale Reconstruction of the Saccharomyces cerevisiae Metabolic Network. Genome Res. 2003, 13: 244-253. 10.1101/gr.234503
Tai SL, Boer VM, Daran-Lapujade P, Walsh MC, de Winde JH, Daran JM, Pronk JT: Two-dimensional Transcriptome Analysis in Chemostat Cultures. J Biol Chem. 2005, 280: 437-447. 10.1074/jbc.M501243200
Ter Linde JJM, Liang H, Davis RW, Steensma HY, van Dijken JP, Pronk JT: Genome-Wide Transcriptional Analysis of Aerobic and Anaerobic Chemostat Cultures of Saccharomyces cerevisiae. J Bacteriol. 1999, 181: 7409-7413.
Wiebe MG, Rintala E, Tamminen A, Simolin H, Salusjärvi L, Toivari M, Kokkonen JT, Kiuru J, Ketola RA, Jouhten P, Huuskonen A, Maaheimo H, Ruohonen L, Penttilä M: Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Res. 2008, 8: 140-154.
Smits HP, Hauf J, Muller S, Hobley TJ, Zimmermann FK, Hahn-Hägerdal B, Nielsen J, Olsson L: Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast. 2000, 16: 1325-1334. 10.1002/1097-0061(200010)16:14<1325::AID-YEA627>3.0.CO;2-E
Maaheimo H, Fiaux J, Ìakar PZ, Bailey JE, Sauer U, Szyperski T: Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional 13C labelling of common amino acids. Eur J Biochem. 2001, 268: 2464-2479. 10.1046/j.1432-1327.2001.02126.x
Nissen TL, Schulze U, Nielsen J, Villadsen J: Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology. 1997, 143: 203-218.
Sonderegger M, Jeppsson M, Hahn-Hägerdal B, Sauer U: Molecular Basis for Anaerobic Growth of Saccharomyces cerevisiae on Xylose, Investigated by Global Gene Expression and Metabolic Flux Analysis. Appl Environ Microbiol. 2004, 70: 2307-2317. 10.1128/AEM.70.4.2307-2317.2004
Daran-Lapujade P, Rossell S, van Gulik WM, Luttik MAH, de Groot MJL, Slijper M, Heck AJR, Daran J-M, de Winde JH, Westerhoff HV, Pronk JT, Bakker BM: The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. PNAS. 2007, 104: 15753-15758. 10.1073/pnas.0707476104
van Winden W, van Dam JC, Ras C, Kleijn RJ, Vinke JL, van Gulik WM, Heijnen JJ: Metabolic-flux analysis of Saccharomyces cervisiae CEN.PK113-7D based on mass isotopomer measurements of 13C-labeled primary metabolites. FEMS Yeast Res. 2005, 5: 559-568. 10.1016/j.femsyr.2004.10.007
Grosz R, Stephanopoulos G: Physiological, Biochemical, and Mathematical Studies of Micro-Aerobic Continuous Ethanol Fermentation by Saccharomyces cerevisiae I: Hysteresis, Oscillations, and Maximum Specific Ethanol Productivities in Chemostat Culture. Biotechnol Bioeng. 1990, 36: 1006-1019. 10.1002/bit.260361006
Zitomer RS, Lowry CV: Regulation of Gene Expression by Oxygen in Saccharomyces cerevisiae. Microbiol Rev. 1992, 56: 1-11.
Kwast KE, Burke PV, Boyton RO: Oxygen sensing and the transcriptional regulation of oxygen-responsive genes in yeast. J Exp Biol. 1998, 201: 1177-1195.
van Dijken JP, Bauer J, Brambilla L, Dupoc P, Francois JM, Gancedo FC, Giuseppin MLF, Heijnen JJ, Hoare M, Lange HC, Madden EA, Niederberger P, Nielsen J, Parrou JL, Petit T, Porro D, Reuss M, van Riel N, Rizzi M, Steensma HY, Verrips CT, Vindeløv J, Pronk JT: An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol. 2000, 26: 706-714. 10.1016/S0141-0229(00)00162-9
Szyperski T: Biosynthetically directed fractional 13C-labelling of proteinogenic amino acids. An efficient tool to investigate intermediary metabolism. Eur J Biochem. 1995, 232: 433-448. 10.1111/j.1432-1033.1995.tb20829.x
Kleijn RJ, van Winden WA, van Gulik WM, Heijnen JJ: Revisiting the 13C-label distribution of the non-oxidative branch of the pentose phosphate pathway based upon kinetic and genetic evidence. FEBS J. 2005, 272: 4970-4982. 10.1111/j.1742-4658.2005.04907.x
Camarasa C, Grivet JP, Dequin S: Investigation by 13C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways for succinate formation in Saccharomyces cerevisiae during anaerobic fermentation. Microbiology. 2003, 149: 2669-2678. 10.1099/mic.0.26007-0
Rosenfeld E, Beauvoit B, Rigoulet M, Salmon JM: Non-respiratory oxygen consumption pathways in anaerobically-grown Saccharomyces cerevisiae: evidence and partial characterization. Yeast. 2002, 19: 1299-1321. 10.1002/yea.918
Saccharomyces Genome Database., http://www.yeastgenome.org/
Flikweert MT, Zanden van der L, Janssen WMTM, Steensma HY, van Dijken JP, Pronk JT: Pyruvate decarboxylase: An indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast. 1996, 12: 247-257. 10.1002/(SICI)1097-0061(19960315)12:3<247::AID-YEA911>3.0.CO;2-I
Semenza GL: Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J. 2007, 405: 1-9.
Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL: HIF-1 Regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007, 129: 111-122. 10.1016/j.cell.2007.01.047
Pronk JT, Steensma HY, van Dijken JP: Pyruvate metabolism in Saccharomyces cerevisiae. Yeast. 1996, 12: 1607-1633. 10.1002/(SICI)1097-0061(199612)12:16<1607::AID-YEA70>3.0.CO;2-4
Bakker B, Bro C, Kötter P, Luttik MAH, van Dijken JP, Pronk JT: The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol. 2000, 182: 4730-4737. 10.1128/JB.182.17.4730-4737.2000
Costenoble R, Valadi H, Gustafsson L, Niklasson C, Franzén CJ: Microaerobic glycerol formation in Saccharomyces cerevisiae. Yeast. 2000, 16: 1483-1495. 10.1002/1097-0061(200012)16:16<1483::AID-YEA642>3.0.CO;2-K
Vanrolleghem PA, de Jong-Gubbels P, van Gulik WM, Pronk JT, van Dijken JP, Heijnen S: Validation of a Metabolic Network for Saccharomyces cerevisiae Using Mixed Substrate Studies. Biotechnol Prog. 1996, 12: 434-448. 10.1021/bp960022i
Rigoulet M, Leverve X, Fontaine E, Ouhabi R, Guérin B: Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: Dependence upon both fluxes and forces. Mol Cell Biochem. 1998, 184: 35-52. 10.1023/A:1006858104988
Avéret N, Fitton V, Bunoust O, Rigoulet M, Guérin B: Yeast mitochondrial metabolism: From in vitro to in situ quantitative study. Mol Cell Biochem. 1998, 184: 67-79. 10.1023/A:1006830810440
Ouhabi R, Rigoulet M, Guerin B: Flux-yield dependence of oxidative phosphorylation at constant ΔμH+. FEBS Lett. 1989, 254: 199-202. 10.1016/0014-5793(89)81038-5.
Vaseghi S, Baumeister A, Rizzi M, Reuss M: In vivo Dynamics of the Pentose Phosphate Pathway in Saccharomyces cerevisiae. Metab Eng. 1999, 1: 128-140. 10.1006/mben.1998.0110
Bruinenberg PM, van Dijken JP, Scheffers WA: A theoretical analysis of NADPH production and consumption in yeasts. J Gen Microbiol. 1983, 129: 953-964.
Minard KI, McAlister-Henn L: Dependence of Peroxisomal β-Oxidation of Cytosolic Sources of NADPH. J Biol Chem. 1999, 274: 3402-3406. 10.1074/jbc.274.6.3402
Cakir T, Kirdar B, Önsan ZI, Ulgen KÖ, Nielsen J: Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. BMC Syst Biol. 2007, 1: 18- 10.1186/1752-0509-1-18
Daran-Lapujade P, Jansen ML, Daran JM, van Gulik W, de Winde JH, Pronk JT: Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae, a chemostat culture study. J Biol Chem. 2004, 279: 9125-9138. 10.1074/jbc.M309578200
De Groot M, Daran-Lapujade P, van Breukelen B, Knijnenburg T, de Hulster E, Reinders M, Pronk J, Heck A, Slijper M: Quantitative proteomics and Transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. Microbiology. 2007, 153: 3864-3878. 10.1099/mic.0.2007/009969-0
Elbing K, Ståhlberg A, Hohmann S, Gustafsson L: Transcriptional responses to glucose at different glycolytic rates in Saccharomyces cerevisiae. Eur J Biochem. 2004, 271: 4855-4864. 10.1111/j.1432-1033.2004.04451.x
de Jong-Gubbels P, Bauer J, Niederberger P, Stückrath I, Kötter P, van Dijken JP, Pronk JT: Physiological characterisation of a pyruvate-carboxylase-negative Saccharomyces cerevisiae mutant in batch and chemostat. Antonie Van Leeuwenhoek. 1998, 74: 253-263. 10.1023/A:1001772613615
Verduyn C, Postma E, Scheffers WA, van Dijken JP: Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992, 8: 501-517. 10.1002/yea.320080703
Sauer U, Hatzimanikatis V, Bailey JE, Hochuli M, Szyperski T, Wüthrich K: Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat Biotechnol. 1997, 15: 448-452. 10.1038/nbt0597-448
Sauer U, Lasko DR, Fiaux J, Hochuli M, Glaser R, Szyperski T, Wüthrich K, Bailey JE: Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J Bacteriol. 1999, 181: 6679-6688.
Sola A, Maaheimo H, Ylonen K, Ferrer P, Szyperski T: Amino acid biosynthesis and metabolic flux profiling of Pichia pastoris. Eur J Biochem. 2004, 271: 2462-2470. 10.1111/j.1432-1033.2004.04176.x
Lange HC: Quantitative Physiology of S. cerevisiae using Metabolic Network Analysis. 2002, PhD thesis. Technical University Delft, Delft, The Netherlands
Swiegers J, Dippenaar N, Pretorius I, Bauer F: Carnitine-dependent metabolic activities in Saccharomyces cerevisiae: three carnitine acetyltranferases are essential in a carnitine-dependent strain. Yeast. 2001, 18: 585-595. 10.1002/yea.712
van Roermund C, Hettema E, Berg van der M, Tabak H, Wanders R: Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. EMBO J. 1999, 18: 5843-5852. 10.1093/emboj/18.21.5843
Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schönfisch B, Perschil I, Chacinska A, Guiard B, Rehling P, Pfanner N, Meisinger C: The proteome of Saccharomyces cerevisiae mitochondria. PNAS. 2003, 100: 13207-13212. 10.1073/pnas.2135385100
Palmieri L, Vozza A, Agrimi G, De Marco V, Runswick J, Palmieri F, Walker JE: Identification of the Yeast Mitochondrial Transporter for Oxaloacetate and Sulfate. J Biol Chem. 1999, 274: 22184-22190. 10.1074/jbc.274.32.22184
Visser W, Baan van der AA, Batenburg-van der Vegte W, Scheffers A, Krämer R, van Dijken JP: Involvement of mitochondria in the assimilatory metabolism of anaerobic Saccharomyces cerevisiae cultures. Microbiology. 1994, 140: 3039-3046.
Boles E, de Jong-Gubbels P, Pronk JT: Identification and Characterization of MAE1, the Saccharomyces cerevisiae Structural Gene Encoding Mitochondrial Malic Enzyme. J Bacteriol. 1998, 180: 2875-2882.