Oxidative Stress and Diabetic Complications

Circulation Research - Tập 107 Số 9 - Trang 1058-1070 - 2010
Ferdinando Giacco1, Michael Brownlee1
1From the Diabetes Research Center, Departments of Medicine/Endocrinology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461-1602.

Tóm tắt

Oxidative stress plays a pivotal role in the development of diabetes complications, both microvascular and cardiovascular. The metabolic abnormalities of diabetes cause mitochondrial superoxide overproduction in endothelial cells of both large and small vessels, as well as in the myocardium. This increased superoxide production causes the activation of 5 major pathways involved in the pathogenesis of complications: polyol pathway flux, increased formation of AGEs (advanced glycation end products), increased expression of the receptor for AGEs and its activating ligands, activation of protein kinase C isoforms, and overactivity of the hexosamine pathway. It also directly inactivates 2 critical antiatherosclerotic enzymes, endothelial nitric oxide synthase and prostacyclin synthase. Through these pathways, increased intracellular reactive oxygen species (ROS) cause defective angiogenesis in response to ischemia, activate a number of proinflammatory pathways, and cause long-lasting epigenetic changes that drive persistent expression of proinflammatory genes after glycemia is normalized (“hyperglycemic memory”). Atherosclerosis and cardiomyopathy in type 2 diabetes are caused in part by pathway-selective insulin resistance, which increases mitochondrial ROS production from free fatty acids and by inactivation of antiatherosclerosis enzymes by ROS. Overexpression of superoxide dismutase in transgenic diabetic mice prevents diabetic retinopathy, nephropathy, and cardiomyopathy. The aim of this review is to highlight advances in understanding the role of metabolite-generated ROS in the development of diabetic complications.

Từ khóa


Tài liệu tham khảo

CDC National Diabetes fact sheet 2007.

10.1016/S0140-6736(02)09089-X

10.1161/01.CIR.99.17.2239

10.2337/diabetes.54.6.1615

10.1056/NEJM199309303291401

10.1016/S0140-6736(98)07019-6

10.1056/NEJMoa0706245

10.2337/db07-1618

10.2337/diab.42.1.80

10.1161/CIRCRESAHA.110.217117

10.1161/circresaha.109.213447

10.1172/JCI24819

10.1096/fasebj.13.1.23

10.1097/01.ASN.0000077408.15865.06

10.1074/jbc.M007505200

10.1007/s00125-004-1325-7

10.1016/S0021-9258(19)36783-3

10.1167/iovs.02-1193

10.1016/0003-9861(82)90219-3

10.1126/science.12192669

10.1161/01.res.0000137876.28454.64

10.1161/01.res.0000065620.39919.20

Stitt AW, Moore JE, Sharkey JA, Murphy G, Simpson DA, Bucala R, Vlassara H, Archer DB. Advanced glycation end products in vitreous: structural and functional implications for diabetic vitreopathy. Invest Ophthalmol Vis Sci. 1998; 39: 2517–2523.

Stitt AW, Li YM, Gardiner TA, Bucala R, Archer DB, Vlassara H. Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am J Pathol. 1997; 150: 523–531.

10.1016/0046-8177(95)90063-2

10.1172/JCI119853

10.1172/JCI119285

10.1161/CIRCULATIONAHA.106.621854

10.1074/jbc.M704703200

10.2337/db08-1565

10.1016/S0002-9440(10)65282-0

10.1172/JCI9087

10.1172/JCI29710

10.1073/pnas.0906670106

10.1074/jbc.M707451200

10.1074/jbc.272.28.17810

10.1074/jbc.272.26.16498

10.1007/s001250051089

10.1006/bbrc.1998.8489

10.1172/JCI18058

10.1007/BF03401582

10.1172/JCI118175

10.1046/j.1365-2141.1996.379915.x

10.1046/j.1523-1755.1998.00157.x

10.1172/JCI118397

10.1172/JCI1277

10.1006/bbrc.1997.7036

10.2337/db09-0801

10.2337/db07-1808

10.1007/s00109-005-0688-7

Rong LL, Gooch C, Szabolcs M, Herold KC, Lalla E, Hays AP, Yan SF, Yan SS, Schmidt AM. RAGE: a journey from the complications of diabetes to disorders of the nervous system-striking a fine balance between injury and repair. Restor Neurol Neurosci. 2005; 23: 355–365.

10.2337/diabetes.47.6.859

10.1073/pnas.89.22.11059

10.2337/diab.39.6.667

Shiba T, Inoguchi T, Sportsman JR, Heath WF, Bursell S, King GL. Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation. Am J Physiol. 1993; 265: E783–E793.

10.1152/ajprenal.2000.278.4.F676

10.2337/diab.43.1.1

10.2337/diab.43.9.1122

Ayo SH, Radnik R, Garoni JA, Troyer DA, Kreisberg JI. High glucose increases diacylglycerol mass and activates protein kinase C in mesangial cell cultures. Am J Physiol. 1991; 261: F571–F577.

10.1172/JCI119503

10.1038/nm.2052

10.1152/ajpendo.2000.278.1.E146

10.1161/01.CIR.101.6.676

10.2337/diab.46.9.1497

10.2337/diab.43.3.478

10.2337/diab.46.4.671

10.1007/BF00404342

10.1159/000425092

10.1097/00005344-199710000-00019

10.2337/diabetes.48.4.855

10.1074/jbc.271.25.15237

10.1172/JCI119875

10.1074/jbc.273.14.8225

10.1073/pnas.97.22.12222

10.2337/diabetes.50.6.1491

10.1146/annurev.biochem.66.1.315

10.1073/pnas.0502488102

10.1006/abbi.2001.2331

10.1074/jbc.M303810200

10.2337/diabetes.53.4.1074

10.1007/s001250050084

10.1172/JCI114585

10.1073/pnas.92.7.2780

10.1146/annurev.med.46.1.223

10.1038/35008121

10.1146/annurev.bi.61.070192.005523

10.1016/S0021-9258(19)38410-8

10.1016/S0014-5793(97)01159-9

10.1073/pnas.0511154103

10.1172/JCI11235

10.2337/diabetes.55.03.06.db05-1039

10.2337/diabetes.53.5.1336

10.2337/db08-0610

10.1111/j.1523-1755.2005.00274.x

10.1073/pnas.0509779103

10.2337/db05-1438

10.1172/JCI18127

10.1073/pnas.94.21.11669

10.1001/jama.287.19.2563

10.1056/NEJMoa052187

10.1056/NEJMoa0806470

10.1016/j.mrrev.2008.02.004

10.1038/nrm2640

10.1038/nrg2555

10.1084/jem.20081188

10.2337/db08-1666

10.2337/db08-0645

10.1161/circresaha.108.175190

10.1073/pnas.0803623105

10.2337/diabetes.47.10.1643

10.1056/NEJM199807233390404

10.2337/diacare.24.8.1397

National Diabetes Data Group. Diabetes in America. 2nd ed. Bethesda, Md: National Institute of Diabetes and Digestive and Kidney Diseases, NIH; 1995.

10.1001/archinte.161.3.397

10.1210/jcem.83.8.5005

10.1172/JCI23354

10.1161/01.CIR.0000023921.93743.89

10.1172/JCI29024

10.2337/dc09-1278

10.1016/j.cmet.2007.12.009

10.1073/pnas.0914798107

10.1172/JCI5971

10.1007/s11906-009-0010-0

10.1073/pnas.97.4.1784

10.1152/ajpheart.00124.2009

10.1016/j.bbrc.2006.03.062

10.2337/diabetes.51.1.174

10.2337/diabetes.54.6.1838

10.1091/mbc.e05-08-0742

10.1152/ajpheart.00697.2002

10.2337/diabetes.49.11.1939

10.1194/jlr.M600299-JLR200

10.1074/jbc.M806209200

10.1038/nm834

10.1074/jbc.M600418200

10.2337/db06-0369

10.1007/s00125-008-1100-2

10.1007/s00125-008-1224-4

10.2174/157339905774574383

10.1007/s00125-007-0771-4

10.2337/db06-0147

10.2337/db06-0067

10.1038/83241

10.1126/science.286.5438.304

10.1016/j.expneurol.2007.07.017

10.1016/j.atherosclerosis.2005.02.024

10.1681/ASN.2005111148

10.1016/j.freeradbiomed.2006.01.012

10.1016/j.metabol.2007.04.024

10.1369/jhc.7A7221.2007

10.1016/S0026-0495(85)80010-X