Oxidant and antioxidant signalling in plants: a re‐evaluation of the concept of oxidative stress in a physiological context

Plant, Cell and Environment - Tập 28 Số 8 - Trang 1056-1071 - 2005
Christine H. Foyer1, Graham Noctor2
1Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK and
2Institut de Biotechnologie des Plantes, UMR CNRS 8618, Bâtiment 630, Université de Paris XI, 91405 Orsay cedex, France

Tóm tắt

ABSTRACTWhile the chemical nature of reactive oxygen species (ROS) dictates that they are potentially harmful to cells, recent genetic evidence suggests that in planta purely physicochemical damage may be much more limited than previously thought. The most potentially deleterious effect of ROS under most conditions is that at high concentrations they trigger genetically programmed cell suicide events. Moreover, because plants use ROS as second messengers in signal transduction cascades in processes as diverse as mitosis, tropisms and cell death, their accumulation is crucial to plant development as well as defence. Direct ROS signal transduction will ensue only if ROS escape destruction by antioxidants or are otherwise consumed in a ROS cascade. Thus, the major low molecular weight antioxidants determine the specificity of the signal. They are also themselves signal‐transducing molecules that can either signal independently or further transmit ROS signals. The moment has come to re‐evaluate the concept of oxidative stress. In contrast to this pejorative or negative term, implying a state to be avoided, we propose that the syndrome would be more usefully described as ‘oxidative signalling’, that is, an important and critical function associated with the mechanisms by which plant cells sense the environment and make appropriate adjustments to gene expression, metabolism and physiology.

Từ khóa


Tài liệu tham khảo

10.1146/annurev.arplant.55.031903.141701

10.1046/j.1365-313X.1997.12010179.x

10.1104/pp.124.2.823

10.1111/j.1365-3040.2005.01326.x

10.1105/tpc.104.022608

10.1104/pp.103.027250

10.1104/pp.103.032185

10.1093/jxb/erh020

10.1034/j.1399-3054.2000.100402.x

10.1104/pp.116.3.1029

10.1021/bi010518v

10.1038/nature02075

10.1105/tpc.001644

10.1034/j.1399-3054.2003.1170106.x

10.1104/pp.104.039859

10.1046/j.1365-313x.1998.00276.x

10.2307/3869945

10.1046/j.1365-313X.1996.10030491.x

10.1074/jbc.M409482200

10.1093/jxb/erh275

10.1105/tpc.021584

10.1073/pnas.0635176100

10.1104/pp.107.2.365

10.1046/j.1365-313x.1998.00262.x

10.1104/pp.104.052233

10.1111/j.1365-3040.2004.01203.x

10.1104/pp.109.1.203

10.1073/pnas.93.18.9970

10.1105/tpc.11.7.1277

10.1046/j.1365-313X.1999.00452.x

10.1007/s000180050041

De Block M., 2004, Generating stress tolerant crops by economizing energy consumption, Pflanzenschutz-Nachrichten Bayer, 57, 105

10.1073/pnas.92.14.6602

10.1104/pp.127.1.159

10.1105/tpc.012849

10.1146/annurev.arplant.54.031902.134836

10.1074/jbc.M202919200

Doke N., 1994, Causes of Photooxidative Stresses and Amelioration of Defense Systems in Plants, 177

10.1152/physrev.00018.2001

10.1023/B:PRES.0000017196.95499.11

10.1105/tpc.009464

10.1016/S0161-5890(01)00108-0

10.1126/science.1095964

Foreman J., 2003, Reactive oxygen species produced by NADPH oxidase regulate plant cell growth, Nature, 27, 442, 10.1038/nature01485

Foyer C.H., 2004, Vitamin C Functions and Biochemistry in Animals and Plants, 65

10.1046/j.1469-8137.2000.00667.x

10.1034/j.1399-3054.2003.00223.x

10.1016/S1360-1385(01)02086-6

Foyer C.H., 2005, Photoprotection, Photoinhibition, Gene Regulation, and Environment, 00

10.1094/MPMI-18-0254

Fridovich I., 1998, Oxygen toxicity: a radical explanation, Journal of Experimental Biology, 201, 1203, 10.1242/jeb.201.8.1203

10.1046/j.1399-3054.2003.00183.x

10.1093/jxb/erh202

10.1104/pp.103.033027

10.1016/1011-1344(92)85095-C

10.1128/IAI.66.5.2052-2059.1998

10.2307/3869996

10.1038/nature03172

Halliwell B., 1981, Chloroplast Metabolism: the Structure and Function of Chloroplasts in Green Leaf Cells, 179

10.1016/S0176-1617(00)80317-X

10.1046/j.1365-313x.2000.00743.x

10.1007/BF02411460

10.1046/j.1432-1033.2002.02905.x

10.1073/pnas.90.7.3108

10.1111/j.1399-3054.1995.tb00852.x

10.1046/j.1365-313X.2003.01658.x

10.1016/S1360-1385(00)01649-6

10.1104/pp.010017

10.1104/pp.107.4.1067

Huang C.S., 1993, Catalytic and regulatiory properties of the heavy subunit of rat kidney γ‐glutamylcysteine synthetase, Journal of Biological Chemistry, 268, 19675, 10.1016/S0021-9258(19)36569-X

10.1104/pp.005504

10.1038/nm0902-918

10.1093/pcp/pcg098

10.1074/jbc.M405127200

10.1074/jbc.M312719200

10.1007/BF00388364

10.1111/j.1365-3040.2005.01325.x

10.1034/j.1399-3054.1999.105218.x

10.1007/BF00409139

10.1089/152308603321223513

10.1046/j.1365-2443.2001.00446.x

10.1093/oxfordjournals.pcp.a029302

10.1104/pp.016014

10.1093/jxb/erh203

10.1016/j.phytochem.2004.04.007

10.1093/emboj/cdg277

10.1104/pp.103.035782

10.1016/S0304-4165(03)00073-4

10.1016/S0014-5793(03)00983-9

10.1023/A:1010601424452

10.1023/B:PRES.0000017174.60951.74

10.1016/S0047-6374(98)00152-3

10.1016/0092-8674(94)90544-4

10.1007/s004250100625

10.1034/j.1399-3054.2003.00156.x

10.1046/j.1365-313X.2003.01639.x

10.1073/pnas.91.21.10059

10.1093/jexbot/49.321.649

10.1016/S1369-5266(00)00134-5

10.1104/pp.006684

10.1073/pnas.221252798

10.1016/S1360-1385(02)02312-9

10.1016/j.tplants.2004.08.009

10.1016/S0014-5793(03)01214-6

10.1039/B315561G

10.1016/S0092-8674(03)00429-X

10.1016/S1369-5266(02)00282-0

10.1146/annurev.arplant.49.1.249

10.1111/j.1399-3054.1997.tb04781.x

10.1093/jexbot/53.372.1283

10.1104/pp.112.3.1071

10.1093/aob/mcf096

10.1093/pcp/pce065

10.1105/tpc.014662

10.1105/tpc.010538

10.1104/pp.010954

10.1016/S1369-5266(03)00069-4

10.1104/pp.103.022798

10.1016/j.freeradbiomed.2004.04.003

10.1104/pp.010787

10.1016/S0981-9428(02)01414-6

10.1104/pp.103.033548

10.1104/pp.104.042663

10.1038/nature02353

10.1111/j.1365-313X.2004.02271.x

10.1016/S1360-1385(01)02085-4

10.1104/pp.104.046656

10.1104/pp.010586

10.1104/pp.123.1.255

10.1515/BC.2000.085

Sanmartin M., 2003, Overexpression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone, Planta, 216, 918, 10.1007/s00425-002-0944-9

10.1023/A:1005929022061

10.1146/annurev.arplant.52.1.627

10.1038/35066500

10.1146/annurev.arplant.51.1.371

10.1104/pp.96.2.650

Shirasu K., 1997, Salicylic acid potentiates an agonist‐dependent gain control that amplifies pathogen signals in the activation of defense mechanisms, Plant Cell, 9, 261

Smirnoff N., 2004, Vitamin C Functions and Biochemistry in Animals and Plants, 1

10.1016/0304-4211(84)90198-6

10.1038/nature01204

10.1073/pnas.192244099

10.1042/bj3200321

10.1046/j.1365-313X.2002.01474.x

10.1093/oxfordjournals.pcp.a078634

10.1074/jbc.M204761200

10.1006/jmbi.2001.4638

10.1016/0076-6879(95)52007-4

10.1104/pp.123.4.1289

10.1073/pnas.2136610100

10.1034/j.1399-3054.2002.1150102.x

10.1104/pp.010141

10.1105/tpc.12.1.97

10.1073/pnas.152337999

10.1111/j.1365-313X.2004.02269.x

10.1126/science.1103178

10.1093/emboj/16.16.4806

10.1007/BF00197598

Xiang C., 2000, Sulfur Nutrition and Sulphur Assimilation in Higher Plants, 409

10.1105/tpc.10.9.1539

10.1104/pp.126.2.564

Yin Z.M., 2000, Glutathione S‐transferase elicits protection against H2O2‐induced cell death via coordinated regulation of stress kinases, Cancer Research, 60, 4053

10.1046/j.1365-313X.2003.01930.x

10.1104/pp.126.4.1438