Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas

Molecular Nutrition and Food Research - Tập 51 Số 1 - Trang 116-134 - 2007
Mendel Friedman1
1Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, USA. [email protected]

Tóm tắt

AbstractTea leaves produce organic compounds that may be involved in the defense of the plants against invading pathogens including insects, bacteria, fungi, and viruses. These metabolites include polyphenolic compounds, the six so‐called catechins, and the methyl‐xanthine alkaloids caffeine, theobromine, and theophylline. Postharvest inactivation of phenol oxidases in green tea leaves prevents oxidation of the catechins, whereas postharvest enzyme‐catalyzed oxidation (fermentation) of catechins in tea leaves results in the formation of four theaflavins as well as polymeric thearubigins. These substances impart the black color to black teas. Black and partly fermented oolong teas contain both classes of phenolic compounds. A need exists to develop a better understanding of the roles of polyphenolic tea compounds in food and medical microbiology. This overview surveys and interprets our present knowledge of activities of tea flavonoids and teas against foodborne and other pathogenic bacteria, virulent protein toxins produced by some of the bacteria, virulent bacteriophages, pathogenic viruses and fungi. Also covered are synergistic, mechanistic, and bioavailability aspects of the antimicrobial effects. Further research is suggested for each of these categories. The herein described findings are not only of fundamental interest, but also have practical implications for nutrition, food safety, and animal and human health.

Từ khóa


Tài liệu tham khảo

10.4315/0362-028X-65.10.1545

10.4315/0362-028X-66.10.1811

10.4315/0362-028X-69.2.354

Friedman M., 2003, Antimicrobial activities of naturally occurring compounds against antibiotic‐resistant Bacillus cereus, vegetative cells and spores, Escherichia coli, and Staphylococcus aureus,, J. Food Prot., 67, 1774, 10.4315/0362-028X-67.8.1774

10.1016/j.ijantimicag.2006.05.023

Friedman M. Structure–antibiotic activity relationships of plant compounds against nonresistant and antibiotic‐resistant foodborne pathogens in: Juneja V. K. Cherry J. P. Tunick M. H. (Eds.) Advances in Microbial Food Safety American Chemical Society Washington DC 2006 pp. 167–183.

10.1021/jf0495340

Friedman M. Henika P. R. Olsen C. W. Avena‐Bustillos A. J. McHugh T. Antimicrobial activities of plant compounds againstEscherichia coliO157:H7 andSalmonella entericaserovar Hadar in tomato and vegetable juices and in a tomato/pectin edible film formulation 93rd Annual Meeting of the International Association for Food Protection Calgary Canada August 13–16 Abstract T3‐01.

10.1111/j.1750-3841.2006.00127.x

10.4315/0362-028X-69.7.1546

10.4315/0362-028X-70.1.218

10.1111/j.1750-3841.2006.00109.x

10.1016/j.ijantimicag.2005.09.002

Beers M. H.(Ed.) Merck Manual of Diagnosis and Therapy 18th Edn. Merck Research Laboratories Whitehouse Station NJ 2006.

Spraycar M.(Ed.) PDR Medical Dictionary Medical Economics Montvale NJ 1995.

10.1021/jf000026

10.1021/jf021066b

10.1021/jf010759

10.1016/S0308-8146(99)00179-X

10.1111/j.1365-2621.2005.tb08304.x

10.1111/j.1750-3841.2006.00090.x

10.1016/S0168-1605(99)00034-3

10.1128/AAC.39.11.2375

10.1111/j.1472-765X.1991.tb00496.x

10.3136/nskkk1962.36.5_375

10.1080/87559129509541057

10.1271/bbb1961.55.1425

10.1016/S1389-1723(00)80038-9

10.1158/0008-5472.CAN-05-2191

10.1158/0008-5472.CAN-04-3429

10.1111/j.1348-0421.1998.tb02260.x

Isogai E., 2001, In vivo synergy between green tea extract and levofloxacin against enterohemorrhagic Escherichia coli O157 infection,, Curr. Microbiol, 42, 248, 10.1007/s0028403357

10.1111/j.1574-6968.1997.tb10424.x

10.1093/jac/42.2.211

10.1248/bpb.28.2125

10.1248/bpb.27.1965

10.1016/j.chroma.2006.05.061

10.4315/0362-028X-67.11.2608

10.1055/s-2005-837816

10.1046/j.1440-1746.2002.02718.x

10.1046/j.1365-2036.2000.00747.x

10.1007/s00284-002-3956-6

10.1111/j.1083-4389.2004.00281.x

10.1128/IAI.69.6.3947-3953.2001

10.1002/biof.552210123

10.1016/j.biocel.2005.10.021

10.11150/kansenshogakuzasshi1970.66.606

10.1016/S0304-4165(03)00007-2

10.1111/j.1834-7819.2000.tb00257.x

10.1159/000016458

10.1159/000092236

Yu H., 1992, Anticariogenic effects of green tea,, Fukuoka Igaku Zasshi, 83, 174

10.1080/0963748031000062029

Xiao Y., 2000, The effects of tea polyphenols on the adherence of cariogenic bacterium to the collagen in vitro,, Hua Xi Kou Qiang Yi Xue Za Zhi, 18, 340

10.1159/000016549

Xiao Y., 2002, The in vitro study of the effects of 11 kinds of traditional Chinese medicine on the growth and acid production of Actinomyces viscosus,, Hua Xi Yi Ke Da Xue Xue Bao, 33, 253

Touyz L. Z., 2001, Anticariogenic effects of black tea (Camellia sinensis) in caries prone‐rats,, Quintessence Int., 32, 647

10.1111/j.1600-0765.2004.00743.x

Ciraj A. M., 2001, Antibacterial activity of black tea (Camelia sinensis) extract against Salmonella serotypes causing enteric fever,, Indian J. Med. Sci., 55, 376

Stewart G. C. Staphylococcus aureus in: Fratamico P. M. Bhunia A. K. Smith J. L. (Eds.) Foodborne Pathogens: Microbiology and Molecular Biology Caister Academic Press Norwich UK 2005 pp. 273–284.

10.3412/jsb.46.839

10.1007/s10156-003-0284-0

10.1093/jac/dkf250

10.1128/AAC.45.6.1737-1742.2001

10.1055/s-2003-45142

10.1016/j.ijantimicag.2003.09.027

10.1128/AAC.50.2.752-755.2006

10.1128/AAC.48.6.1968-1973.2004

10.1179/joc.2004.16.2.122

10.1111/j.1442-2042.2005.01052.x

Tiwari T. P., 2005, Synergistic antimicrobial activity of tea & antibiotics,, Indian J. Med. Res., 122, 80

10.1021/jf025863l

10.1016/j.taap.2004.06.014

10.1016/S0891-5849(02)01366-7

10.1002/biof.5520130124

10.1128/AAC.46.7.2266-2268.2002

10.1248/bpb.27.277

10.1271/bbb.68.1825

10.1271/bbb1961.55.1895

Okada F., 1971, Inhibitory effect of tea catechins on some plant virus diseases,, Jap. Tea Res. Sta. Stud. Tea, 42, 39

Okada F., 1978, Antiviral effects of tea catechins and black tea theaflavins on plant viruses,, Jpn. Agric. Res. Q., 12, 27

10.1021/jf00014a015

10.1021/bp980041n

10.1038/sj.embor.7400118

10.1016/0278-6915(86)90316-9

10.1515/BC.2002.010

10.1021/jf0300801

10.2131/jts.27.441

10.1034/j.1600-0773.2002.900405.x

Sawamura S., 2002, Isolation and determination of an antidote for botulinum neurotoxin from black tea extract,, Nippon Yakurigaku Zasshi, 120, 116P

10.1016/0278-6915(84)90223-0

10.1111/j.1348-0421.1992.tb02103.x

10.1111/j.1365-2672.1991.tb04435.x

10.1074/jbc.M502093200

Shimamura T., 1986, Inhibition of cholera toxin production by thiols in Vibrio cholerae,, Infect. Immun., 53, 700, 10.1128/iai.53.3.700-701.1986

10.1021/jf0009246

10.1023/A:1012558530359

Friedman M. The Chemistry and Biochemistry of the Sulfhydryl Group in Amino Acids Peptides and Proteins Chapter 8 Pergamon Press Oxford UK 1973.

10.1111/j.1523-5378.2005.00315.x

Watanabe M., 1998, Inactivation and toxoiding of biologically‐active components of Bordetella pertussis by tea catechins,, Yakugaku Zasshi, 118, 415, 10.1248/yakushi1947.118.9_415

10.1016/S0264-410X(00)00307-8

10.11150/kansenshogakuzasshi1970.66.599

10.1016/j.lfs.2003.09.048

10.1007/s00403-003-0411-x

10.1177/153537020122600611

10.1080/09637480500398801

10.11150/kansenshogakuzasshi1970.72.211

10.1016/S0304-4165(99)00102-6

10.1016/0005-2736(93)90323-R

Greenberg R. N., 1983, Reduction of the secretory response to Escherichia coli heat‐stable enterotoxin by thiol and disulfide compounds,, Infect. Immun., 41, 174, 10.1128/iai.41.1.174-180.1983

10.1016/S0166-3542(02)00212-7

10.1016/j.ijfoodmicro.2006.04.047

10.1016/S0378-1135(98)00242-9

10.1016/S0006-291X(03)00067-6

10.1021/jf052940e

10.1177/095632020201300403

10.1021/jf061471t

10.1016/j.bbagen.2005.02.012

10.1016/S0166-3542(01)00189-9

Hamza A., 2006, How can (–)‐epigallocatechin gallate from green tea prevent HIV‐1 infection? Mechanistic insights from computational modeling and the implication for rational design of anti‐HIV‐1 entry inhibitors,, J. Phys. Chem. B Condens. Matter Mater. Surf. Interfaces Biophys., 110, 2910

10.1016/0166-3542(93)90008-7

10.1016/j.antiviral.2005.06.010

10.3412/jsb.46.509

10.1093/jac/dkh046

10.1016/j.jnutbio.2005.03.003

10.1021/jf034894t

Lee M. J., 2002, Pharmacokinetics of tea catechins after ingestion of green tea and (–)‐epigallocatechin‐3‐gallate by humans: Formation of different metabolites and individual variability,, Cancer Epidemiol. Biomarkers Prev., 11, 1025

10.1055/s-2000-8599

10.1002/jps.20594

Chow H. H., 2001, Phase I pharmacokinetic study of tea polyphenols following single‐dose administration of epigallocatechin gallate and Polyphenon E,, Cancer Epidemiol. Biomarkers Prev., 10, 53

Chow H. H., 2003, Pharmacokinetics and safety of green tea polyphenols after multiple‐dose administration of epigallocatechin gallate and Polyphenon E in healthy individuals,, Clin. Cancer Res., 9, 3312

10.1158/1078-0432.CCR-04-2549

10.1093/jn/131.6.1731

10.1080/00498250110079149

10.1038/sj.ejcn.1600568

Yang C. S., 1999, Human salivary tea catechin levels and catechin esterase activities: Implication in human cancer prevention studies,, Cancer Epidemiol. Biomarkers Prev., 8, 83

10.1080/10915810305101

10.1159/000094560

Walsh C. Antibiotics Actions Origins Resistance ASM Press Washington DC 2003.

10.1021/jf990080u

10.1021/jf061717u

10.1002/ijc.1231

Matsunaga K., 2002, Epigallocatechin gallate, a potential immunomodulatory agent of tea components, diminishes cigarette smoke condensate‐induced suppression of anti‐Legionella pneumophila activity and cytokine responses of alveolar macrophages,, Clin. Diagn. Lab. Immunol., 9, 864

10.1177/153537020523000906

10.3412/jsb.45.913

10.3412/jsb.45.561

Ganguly N. K., 1996, Mechanism of action of cholera toxin & other toxins,, Indian J. Med. Res., 104, 28

10.7883/yoken1952.44.181

10.1046/j.1442-200x.2000.01248.x

10.1016/S0091-6749(03)02007-4

10.1111/j.1348-0421.2002.tb02724.x

10.1080/10408410590912952

10.1016/j.resmic.2006.07.004