Overfitting in quantum machine learning and entangling dropout

Masahiro Kobayashi1, Kouhei Nakaji2,3, Naoki Yamamoto4
1KEIO UNIVERSITY
2Quantum Computing Center, Keio University, Yokohama, Japan
3Research Center for Emerging Computing Technologies, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
4Department of Applied Physics and Physico-Informatics, Keio University, Yokohama, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Banchi L, Pereira J, Pirandola S (2021) Generalization in quantum machine learning a quantum information standpoint. PRX Quantum 2:040321

Biamonte J, Wittek P, Nicola P, Rebentrost P, Wiebe N, Lloyd S (2017) Quantum machine learning. Nature 549:195

Caro MC, Gil-Fuster E, Meyer JJ, Eisert J, Sweke R (2021) Encoding-dependent generalization bounds for parametrized quantum circuits. Quantum 5:582

Caro MC, Huang H-Y, Cerezo M, Sharma K, Sornborger A, Cincio L, Coles PJ (2022) Generalization in quantum machine learning from few training data. Nat Commun 13:4919

Chen C. -C., Watabe M, Shiba K, Sogabe M, Sakamoto K, Sogabe T (2021) On the expressibility and overfitting of quantum circuit learning. ACM Trans Quantum Comput 2(1):1/24

Du Y, Hsieh M-H, Liu T, You S, Tao D (2021) Learnability of quantum neural networks. PRX Quantum 2:040337

Gil Vidal FJ, Theis DO (2020) Input redundancy for parameterized quantum circuits. Front. Phys. 8:297

Gyurik C, van Vreumingen D, Dunjko V (2021) Structural risk minimization for quantum linear classifiers. arXiv:2105.05566

Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM (2019) Supervised learning with quantum-enhanced feature spaces. Nature 567(7747):209

Jimmy Ba L, Frey B (2013) Adaptive dropout for training deep neural networks. Advances in Neural Information Processing Systems 26 (NIPS)

Mitarai K, Negoro M, Kitagawa M, Fujii K (2018) Quantum circuit learning. Phys Rev A 98:032309

Poland K, Beer K, Osborne TJ (2003) No free lunch for quantum machine learning, arXiv:2003.14103

Salinas AP, Cervera-Lierta A, Gil-Fuster E, Latorre JI (2020) Data re-uploading for a universal quantum classifier. Quantum 4:226

Schuld M, Bocharov A, Svore KM, Wiebe N (2020) Circuit-centric quantum classifiers. Phys Rev A 101:032308

Schuld M, Sweke R, Meyer JJ (2021) Effect of data encoding on the expressive power of variational quantum-machine-learning models. Phys Rev A 103:032430

Sharma K, Cerezo M, Holmes Z, Cincio L, Sornborger A, Coles PJ (2022) Reformulation of the No-Free-Lunch theorem for entangled datasets. Phys Rev Lett 128:070501

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929/1958

Verdon G, Pye J, Broughton M (2018) A universal training algorithm for quantum deep learning. arXiv:1806.09729