Overfitting in quantum machine learning and entangling dropout
Tóm tắt
Từ khóa
Tài liệu tham khảo
Banchi L, Pereira J, Pirandola S (2021) Generalization in quantum machine learning a quantum information standpoint. PRX Quantum 2:040321
Biamonte J, Wittek P, Nicola P, Rebentrost P, Wiebe N, Lloyd S (2017) Quantum machine learning. Nature 549:195
Caro MC, Gil-Fuster E, Meyer JJ, Eisert J, Sweke R (2021) Encoding-dependent generalization bounds for parametrized quantum circuits. Quantum 5:582
Caro MC, Huang H-Y, Cerezo M, Sharma K, Sornborger A, Cincio L, Coles PJ (2022) Generalization in quantum machine learning from few training data. Nat Commun 13:4919
Chen C. -C., Watabe M, Shiba K, Sogabe M, Sakamoto K, Sogabe T (2021) On the expressibility and overfitting of quantum circuit learning. ACM Trans Quantum Comput 2(1):1/24
Du Y, Hsieh M-H, Liu T, You S, Tao D (2021) Learnability of quantum neural networks. PRX Quantum 2:040337
Gil Vidal FJ, Theis DO (2020) Input redundancy for parameterized quantum circuits. Front. Phys. 8:297
Gyurik C, van Vreumingen D, Dunjko V (2021) Structural risk minimization for quantum linear classifiers. arXiv:2105.05566
Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM (2019) Supervised learning with quantum-enhanced feature spaces. Nature 567(7747):209
Jimmy Ba L, Frey B (2013) Adaptive dropout for training deep neural networks. Advances in Neural Information Processing Systems 26 (NIPS)
Poland K, Beer K, Osborne TJ (2003) No free lunch for quantum machine learning, arXiv:2003.14103
Salinas AP, Cervera-Lierta A, Gil-Fuster E, Latorre JI (2020) Data re-uploading for a universal quantum classifier. Quantum 4:226
Schuld M, Bocharov A, Svore KM, Wiebe N (2020) Circuit-centric quantum classifiers. Phys Rev A 101:032308
Schuld M, Sweke R, Meyer JJ (2021) Effect of data encoding on the expressive power of variational quantum-machine-learning models. Phys Rev A 103:032430
Sharma K, Cerezo M, Holmes Z, Cincio L, Sornborger A, Coles PJ (2022) Reformulation of the No-Free-Lunch theorem for entangled datasets. Phys Rev Lett 128:070501
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929/1958
Verdon G, Pye J, Broughton M (2018) A universal training algorithm for quantum deep learning. arXiv:1806.09729