Đưa vào biểu hiện vượt trội của Δ12-Fatty Acid Desaturase trong men nấm dầu Rhodosporidium toruloides để sản xuất lipit giàu axit linoleic

Applied Biochemistry and Biotechnology - Tập 180 - Trang 1497-1507 - 2016
Yanan Wang1,2, Sufang Zhang1, Markus Pötter3, Wenyi Sun1, Li Li3, Xiaobing Yang1, Xiang Jiao1, Zongbao K. Zhao1
1Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
2University of Chinese Academy of Sciences, Beijing, China
3Evonik Degussa (China) Co. Ltd., Shanghai Branch, Shanghai, China

Tóm tắt

Dưới điều kiện thiếu dinh dưỡng, men nấm đỏ Rhodosporidium toruloides có khả năng tích trữ lipit trung tính, trong đó các axit béo cấu thành chủ yếu là axit bão hòa và mono-bão hòa với 16 hoặc 18 nguyên tử carbon. Để cải thiện hàm lượng axit linoleic trong lipit, chúng tôi đã kích hoạt biểu hiện có thể được khuyến khích bởi galactose của gen mã hóa Δ12-fatty acid desaturase (FADS) từ Mortierella alpina hoặc Fusarium verticillioides bằng cách tích hợp các cassette biểu hiện tương ứng vào hệ gen của các chủng đơn bội và lưỡng bội của R. toruloides. Hàm lượng axit linoleic tương đối đã tăng lên tới năm lần và nồng độ axit linoleic cuối cùng đạt 1,3 g/L trong điều kiện nuôi cấy trong bình. Kết quả của chúng tôi cho thấy rằng R. toruloides có thể được khai thác sâu hơn như một nhà máy tế bào để sản xuất lipit có giá trị cao và các dẫn xuất axit béo khác như hóa chất sinh học và nhiên liệu.

Từ khóa

#Rhodosporidium toruloides #axit linoleic #desaturase #lipit #sản xuất bio-based

Tài liệu tham khảo

Aguilar, P. S., & de Mendoza, D. (2006). Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Molecular Microbiology, 62, 1507–1514. Clemente, T. E., & Cahoon, E. B. (2009). Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiology, 151, 1030–1040. Chen, Y., Cui, Q., Xu, Y., Yang, S., Gao, M., & Wang, Y. (2015). Effects of tung oilseed FAD2 and DGAT2 genes on unsaturated fatty acid accumulation in Rhodotorula glutinis and Arabidopsis thaliana. Molecular Genetics and Genomics, 290, 1605–1613. Sakuradani, E., Kobayashi, M., Ashikari, T., & Shimizu, S. (1999). Identification of Delta12-fatty acid desaturase from arachidonic acid-producing mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. European Journal of Biochemistry, 261, 812–820. Huang, Y. S., Chaudhary, S., Thurmond, J. M., Bobik Jr., E. G., Yuan, L., Chan, G. M., Kirchner, S. J., Mukerji, P., & Knutzon, D. S. (1999). Cloning of delta12- and delta6-desaturases from Mortierella Alpina and recombinant production of gamma-linolenic acid in Saccharomyces cerevisiae. Lipids, 34, 649–659. Kainou, K., Kamisaka, Y., Kimura, K., & Uemura, H. (2006). Isolation of Delta12 and omega3-fatty acid desaturase genes from the yeast Kluyveromyces lactis and their heterologous expression to produce linoleic and alpha-linolenic acids in Saccharomyces cerevisiae. Yeast, 23, 605–612. Yazawa, H., Iwahashi, H., Kamisaka, Y., Kimura, K., & Uemura, H. (2009). Production of polyunsaturated fatty acids in yeast Saccharomyces cerevisiae and its relation to alkaline pH tolerance. Yeast, 26, 167–184. Dyer, J. M., Chapital, D. C., Kuan, J. W., Mullen, R. T., & Pepperman, A. B. (2002). Metabolic engineering of Saccharomyces cerevisiae for production of novel lipid compounds. Applied Microbiology and Biotechnology, 59, 224–230. Blazeck, J., Liu, L., Redden, H., & Alper, H. (2011). Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Applied and Environmental Microbiology, 77, 7905–7914. Chen, D. C., Beckerich, J. M., & Gaillardin, C. (1997). One-step transformation of the dimorphic yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 48, 232–235. Fickers, P., Le Dall, M. T., Gaillardin, C., Thonart, P., & Nicaud, J. M. (2003). New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. Journal of Microbiological Methods, 55, 727–737. Liu, L. Q., Otoupal, P., Pan, A., & Alper, H. S. (2014). Increasing expression level and copy number of a Yarrowia lipolytica plasmid through regulated centromere function. FEMS Yeast Research, 14, 1124–1127. Wang, J. H., Hung, W., & Tsai, S. H. (2011). High efficiency transformation by electroporation of Yarrowia lipolytica. Journal of Microbiology, 49, 469–472. Bommareddy, R. R., Sabra, W., Maheshwari, G., & Zeng, A. P. (2015). Metabolic network analysis and experimental study of lipid production in Rhodosporidium toruloides grown on single and mixed substrates. Microbial Cell Factories, 14, 36. Lane, S., Zhang, S., Wei, N., Rao, C., & Jin, Y. S. (2014). Development and physiological characterization of cellobiose-consuming Yarrowia lipolytica. Biotechnology and Bioengineering, 112, 1012–1022. Li, Y. H., Zhao, Z. B., & Bai, F. W. (2007). High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 41, 312–317. Kumar, S., Kushwaha, H., Bachhawat, A. K., Raghava, G. P., & Ganesan, K. (2012). Genome sequence of the oleaginous red yeast Rhodosporidium toruloides MTCC 457. Eukaryotic Cell, 11, 1083–1084. Zhu, Z., Zhang, S., Liu, H., Shen, H., Lin, X., Yang, F., et al. (2012). A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nature Communications, 3, 1112. Koh, C. M., Liu, Y., Moehninsi, Du, M., & Ji, L. (2014). Molecular characterization of KU70 and KU80 homologues and exploitation of a KU70-deficient mutant for improving gene deletion frequency in Rhodosporidium toruloides. BMC Microbiology, 14, 50. Lin, X., Wang, Y., Zhang, S., Zhu, Z., Zhou, Y. J., Yang, F., Sun, W., Wang, X., & Zhao, Z. K. (2014). Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Research, 14, 547–555. Liu, Y., Koh, C. M., Sun, L., Hlaing, M. M., Du, M., Peng, N., & Ji, L. (2013). Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Applied Microbiology and Biotechnology, 97, 719–729. Damude, H. G., Zhang, H., Farrall, L., Ripp, K. G., Tomb, J. F., Hollerbach, D., & Yadav, N. S. (2006). Identification of bifunctional delta12/omega3 fatty acid desaturases for improving the ratio of omega3 to omega6 fatty acids in microbes and plants. Proceedings of the National Academy of Sciences of the United States of America, 103, 9446–9451. Lazo, G.R., Stein, P.A., Ludwig, R.A. (1991). A DNA transformation competent Arabidopsis genomic library in Agrobacterium. Nat Biotechnol, 9, 963–967. Bundock, P., den Dulk-Ras, A., Beijersbergen, A., & Hooykaas, P. J. (1995). Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. The EMBO Journal, 14, 3206–3214. Ma, S., Wang, Y., Jiao, X., Zhang, S., & Zhao, Z. K. (2015). Phosphate starvation derepressed expression vector for engineering oleaginous yeast Rhodosporidium toruloides. Acta Microbiologica Sinica, 55, 1505–1511. Van, D., & Lowe, J. (2006). RF cloning: a restriction-free method for inserting target genes into plasmids. Journal of Biochemical and Biophysical Methods, 67, 67–74. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning a laboratory manual, 3rd edi, volume 1 (pp. 91–92). BeiJing: Science Press. Wang, Y., Lin, X., Zhang, S., Sun, W., Ma, S., & Zhao, Z. K. (2016). Cloning and evaluation of different constitutive promoters in the oleaginous yeast Rhodosporidium toruloides. Yeast, 33, 99–106. Liu, H., Zhao, X., Wang, F., Li, Y., Jiang, X., Ye, M., Zhao, Z. K., & Zou, H. (2009). Comparative proteomic analysis of Rhodosporidium toruloides during lipid accumulation. Yeast, 26, 553–566. Certik, M., & Shimizu, S. (1999). Biosynthesis and regulation of microbial polyunsaturated fatty acid production. Journal of Bioscience and Bioengineering, 87, 1–14. Uemura, H. (2012). Synthesis and production of unsaturated and polyunsaturated fatty acids in yeast: current state and perspectives. Applied Microbiology and Biotechnology, 95, 1–12. Xue, Z., Sharpe, P. L., Hong, S. P., Yadav, N. S., Xie, D., Short, D. R., et al. (2013). Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nature Biotechnology, 31, 734–740. Bucek, A., Matouskova, P., Sychrova, H., Pichova, I., & Hruskova-Heidingsfeldova, O. (2014). Delta12-fatty acid desaturase from Candida parapsilosis is a multifunctional desaturase producing a range of polyunsaturated and hydroxylated fatty acids. PloS One, 9, e93322. Ageitos, J. M., Vallejo, J. A., Veiga-Crespo, P., & Villa, T. G. (2011). Oily yeasts as oleaginous cell factories. Applied Microbiology and Biotechnology, 90, 1219–1227. Yu, A. Q., Pratomo Juwono, N. K., Leong, S. S., & Chang, M. W. (2014). Production of fatty acid-derived valuable chemicals in synthetic microbes. Frontiers in Bioengineering and Biotechnology, 2, 78. Hu, C., Zhao, X., Zhao, J., Wu, S., & Zhao, Z. K. (2009). Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresource Technology, 100, 4843–4847. Huang, Q., Wang, Q., Gong, Z., Jin, G., Shen, H., Xiao, S., Xie, H., Ye, S., Wang, J., & Zhao, Z. K. (2013). Effects of selected ionic liquids on lipid production by the oleaginous yeast Rhodosporidium toruloides. Bioresource Technology, 130, 339–344. Zhao, X., Wu, S., Hu, C., Wang, Q., Hua, Y., & Zhao, Z. K. (2010). Lipid production from Jerusalem artichoke by Rhodosporidium toruloides Y4. Journal of Industrial Microbiology & Biotechnology, 37, 581–585. Fillet, S., Gibert, J., Suarez, B., Lara, A., Ronchel, C., & Adrio, J. L. (2015). Fatty alcohols production by oleaginous yeast. Journal of Industrial Microbiology & Biotechnology, 42, 1463–1472. Zhang, S., Skerker, J. M., Rutter, C. D., Maurer, M. J., Arkin, A. P., & Rao, C. V. (2016). Engineering Rhodosporidium toruloides for increased lipid production. Biotechnology and Bioengineering, 113, 1056–1066. Rodriguez-Vargas, S., Sanchez-Garcia, A., Martinez-Rivas, J. M., Prieto, J. A., & Randez-Gil, F. (2007). Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Applied and Environmental Microbiology, 73, 110–116.