Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse

Open Biology - Tập 5 Số 12 - Trang 150209 - 2015
Paula A. Coelho1, Leah Bury1, Marta N. Shahbazi2, Kifayathullah Liakath‐Ali3,1, P Tate4, Samuel Wormald4, Christopher J. Hindley5, Meritxell Huch5, Joy Archer6, William C. Skarnes4, Magdalena Zernicka‐Goetz2, David M. Glover1
1Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
2Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
3Centre for Stem Cells and Regenerative Medicine, King’s College London, Floor 28, Tower Wing, Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
4Wellcome Trust Genome Campus, the Wellcome Trust Sanger Institute, Cambridge, Hinxton CB10 1SA, UK
5Henry Wellcome Building of Cancer and Developmental Biology, the Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
6Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK

Tóm tắt

To address the long-known relationship between supernumerary centrosomes and cancer, we have generated a transgenic mouse that permits inducible expression of the master regulator of centriole duplication, Polo-like-kinase-4 (Plk4). Over-expression of Plk4 from this transgene advances the onset of tumour formation that occurs in the absence of the tumour suppressor p53. Plk4 over-expression also leads to hyperproliferation of cells in the pancreas and skin that is enhanced in a p53 null background. Pancreatic islets become enlarged following Plk4 over-expression as a result of equal expansion of α- and β-cells, which exhibit centrosome amplification. Mice overexpressing Plk4 develop grey hair due to a loss of differentiated melanocytes and bald patches of skin associated with a thickening of the epidermis. This reflects an increase in proliferating cells expressing keratin 5 in the basal epidermal layer and the expansion of these cells into suprabasal layers. Such cells also express keratin 6, a marker for hyperplasia. This is paralleled by a decreased expression of later differentiation markers, involucrin, filaggrin and loricrin. Proliferating cells showed an increase in centrosome number and a loss of primary cilia, events that were mirrored in primary cultures of keratinocytes established from these animals. We discuss how repeated duplication of centrioles appears to prevent the formation of basal bodies leading to loss of primary cilia, disruption of signalling and thereby aberrant differentiation of cells within the epidermis. The absence of p53 permits cells with increased centrosomes to continue dividing, thus setting up a neoplastic state of error prone mitoses, a prerequisite for cancer development.

Từ khóa


Tài liệu tham khảo

10.1098/rstb.2013.0469

10.1016/j.cellbi.2005.03.004

10.1073/pnas.95.6.2950

Pihan GA, 1998, Centrosome defects and genetic instability in malignant tumors, Cancer Res., 58, 3974

10.1002/ijc.20633

Sato N, 1999, Centrosome abnormalities in pancreatic ductal carcinoma, Clin. Cancer Res., 5, 963

10.1038/sj.leu.2403779

10.1073/pnas.032479999

Pihan GA, 2003, Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas, Cancer Res., 63, 1398

Segat D, 2010, Pericentriolar material analyses in normal esophageal mucosa, Barrett's metaplasia and adenocarcinoma, Histol. Histopathol, 25, 551

10.1158/1078-0432.CCR-04-0773

10.1038/sj.onc.1205772

Pihan GA, 2001, Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression, Cancer Res., 61, 2212

10.1080/00016480802165767

10.1038/ncomms6267

10.1016/j.cub.2014.08.061

10.1242/bio.201411023

10.1083/jcb.201502088

10.1016/j.cub.2008.11.037

10.1126/science.1142950

10.1083/jcb.200808049

10.1038/ncb1320

10.1016/j.cub.2005.11.042

10.1016/j.cell.2006.05.025

10.1016/j.cub.2007.07.034

10.1016/j.cub.2007.09.031

10.1038/nrm4062

Fuller MT, 1993, The development of Drosophila melanogaster

10.1002/jmor.1051280405

10.1242/dev.01229

10.1083/jcb.153.1.237

10.1016/j.cub.2006.01.053

10.1126/science.aaa5111

10.1073/pnas.1400568111

10.1083/jcb.201502089

10.1101/gad.207027.112

10.1016/j.cub.2008.07.029

10.1016/j.cell.2008.05.039

10.1038/ng.3122

10.1098/rstb.2013.0467

10.1186/1750-1172-6-39

10.1038/ncb2746

Glinsky GV, 2006, Genomic models of metastatic cancer: functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype with altered cell cycle control and activated Polycomb group (PcG) protein chromatin silencing pathway, Cell Cycle, 5, 1208, 10.4161/cc.5.11.2796

10.1158/0008-5472.CAN-07-5516

10.1038/ng1193-225

10.1242/dev.106567

10.1242/jcs.040667

10.1038/nm.3643

10.1083/jcb.98.4.1397

10.1083/jcb.107.2.427

10.1016/j.mod.2008.09.003

10.1016/0092-8674(95)90039-X

10.1038/377552a0

Martín-Caballero J, 2001, Tumor susceptibility of p21(Waf1/Cip1)-deficient mice, Cancer Res., 61, 6234

10.1016/j.devcel.2010.07.009

10.1038/nrg2774

10.1016/j.devcel.2010.07.001

10.1016/j.cell.2011.05.030

10.1242/dev.060210

10.1093/carcin/bgq133

10.1126/science.1104905

10.1038/356215a0

10.1126/science.271.5256.1744

10.1091/mbc.12.5.1315

10.1083/jcb.200403014

10.1186/1471-2121-6-6

10.1101/gad.1447006

10.1038/sj.onc.1204424

10.1038/sj.onc.1204848

10.1038/sj.onc.1210085

10.1038/ncb1529

10.1016/j.cell.2014.06.029

10.18632/oncotarget.2650

10.1038/nrm3175

10.1038/ncb3001

10.1038/sj.jid.5701113

10.1016/j.cub.2012.06.057

10.1016/j.devcel.2013.09.029

10.1038/ncb1633

10.1093/embo-reports/kve064

10.1007/978-1-59745-060-7_14

10.1016/j.cub.2007.12.055