Ovarian cancer: diagnostic accuracy and tumor types distribution in East Africa compared to North America

Diagnostic Pathology - Tập 15 - Trang 1-11 - 2020
Peter F. Rambau1, Martin Köbel2, Derek Tilley3, Alex Mremi4, Robert Lukande5, William Muller6
1Department of Pathology, Catholic University of Health and Allied Sciences (CUHAS), Mwanza, Tanzania
2Department of Pathology and Laboratory Medicine, Foothill Medical Center, University of Calgary, Calgary, Canada
3Holy Cross Cancer Center, Calgary, Canada
4Department of Pathology, Kilimanjaro Christian Medical Center, Moshi, Tanzania
5Department of Pathology, College of Health Sciences, Makerere University, Kampala, Uganda
6Department of Pathology, Mbeya Referral Hospital, Mbeya, Tanzania

Tóm tắt

Ovarian cancer is a spectrum of several histologically distinct tumor types that differ in etiology, response to therapy, and prognosis. In resource-limited settings, the diagnosis of ovarian cancer can be challenging. This study describes the distribution of ovarian cancer tumor types in East Africa as well as assessing the diagnostic accuracy by using contemporary methods. Data from 210 women identified from the records with a diagnosis of ovarian cancer in a period of 15 years were included. Two tissue microarrays were constructed and stained with 20 antibodies relevant to ovarian cancer subtyping. An integrated diagnosis was reached by the review of full Haematoxylin and Eosin stained sections, with consideration of immunohistochemical results. The integrated diagnoses were compared with the original diagnoses, and the degree of agreement was evaluated by percentage and Kappa statistics. Though limited by selection bias, the results suggest lower rates of ovarian cancer in East Africa compared to a North American population from Alberta, Canada. There was a higher proportion of sex cord stromal tumors and germ cell tumors in the East African population. Diagnostic accuracy for main ovarian tumor type categories was substantial (Kappa 0.70), but only fair for specific ovarian carcinoma histotypes (Kappa 0.34). Poor Haematoxylin and Eosin stain was the main factor hindering the correct diagnosis, which was not related to tissue processing. In a resource-limited setting, where immunohistochemistry is not routinely carried out, diagnostic accuracy for the main categories of ovarian carcinoma is substantial and could be further improved by standardization of the basic Haematoxylin and Eosin stain.

Tài liệu tham khảo

Coleman MP, Esteve J, Damiecki P, Arslan A, Renard H. Trends in cancer incidence and mortality. IARC Sci Publ. 1993;121:1–806. Stefan DC, Elzawawy AM, Khaled HM, Ntaganda F, Asiimwe A, Addai BW, et al. Developing cancer control plans in Africa: examples from five countries. Lancet Oncol. 2013;14(4):e189–95. Stefan DC. Cancer Care in Africa: an overview of resources. J Glob Oncol. 2015;1(1):30–6. Korir A, Okerosi N, Ronoh V, Mutuma G, Parkin M. Incidence of cancer in Nairobi, Kenya (2004-2008). Int J Cancer. 2015;137(9):2053–9. Sung PL, Chang YH, Chao KC, Chuang CM. Task force on systematic R, meta-analysis of ovarian C. global distribution pattern of histological subtypes of epithelial ovarian cancer: a database analysis and systematic review. Gynecol Oncol. 2014;133(2):147–54. Gilks CB, Ionescu DN, Kalloger SE, Kobel M, Irving J, Clarke B, et al. Tumor cell type can be reproducibly diagnosed and is of independent prognostic significance in patients with maximally debulked ovarian carcinoma. Hum Pathol. 2008;39(8):1239–51. Kanavos P. The rising burden of cancer in the developing world. Ann Oncol. 2006;17(Suppl 8):viii15–23. African Pathologists' Summit Working G. Proceedings of the African pathologists summit; march 22-23, 2013; Dakar, Senegal: a summary. Arch Pathol Lab Med. 2015;139(1):126–32. Rambau PF. Pathology practice in a resource-poor setting: Mwanza. Tanzania Arch Pathol Lab Med. 2011;135(2):191–3. Adesina A, Chumba D, Nelson AM, Orem J, Roberts DJ, Wabinga H, et al. Improvement of pathology in sub-Saharan Africa. Lancet Oncol. 2013;14(4):e152–7. Kobel M, Rahimi K, Rambau PF, Naugler C, Le Page C, Meunier L, et al. An Immunohistochemical algorithm for ovarian carcinoma typing. Int J Gynecol Pathol. 2016;35(5):430–41. Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014;384(9951):1376–88. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917. Matz M, Coleman MP, Sant M, Chirlaque MD, Visser O, Gore M, et al. The histology of ovarian cancer: worldwide distribution and implications for international survival comparisons (CONCORD-2). Gynecol Oncol. 2017;144(2):405–13. Gilks CB, Prat J. Ovarian carcinoma pathology and genetics: recent advances. Hum Pathol. 2009;40(9):1213–23. Gilks CB, Kommoss F. Ovarian carcinoma Histotypes: their emergence as important prognostic and predictive markers. Oncology (Williston Park). 2016;30(2):178–9. Cramer SF, Roth LM, Ulbright TM, Mazur MT, Nunez CA, Gersell DJ, et al. Evaluation of the reproducibility of the World Health Organization classification of common ovarian cancers. With emphasis on methodology. Arch Pathol Lab Med. 1987;111(9):819–29. Hernandez E, Bhagavan BS, Parmley TH, Rosenshein NB. Interobserver variability in the interpretation of epithelial ovarian cancer. Gynecol Oncol. 1984;17(1):117–23. Lund B, Thomsen HK, Olsen J. Reproducibility of histopathological evaluation in epithelial ovarian carcinoma. Clinical implications. APMIS. 1991;99(4):353–8. Kobel M, Kalloger SE, Baker PM, Ewanowich CA, Arseneau J, Zherebitskiy V, et al. Diagnosis of ovarian carcinoma cell type is highly reproducible: a transcanadian study. Am J Surg Pathol. 2010;34(7):984–93. Singh N, Gilks CB. The changing landscape of gynaecological cancer diagnosis: implications for histopathological practice in the 21st century. Histopathology. 2017;70(1):56–69. Kobel M, Luo L, Grevers X, Lee S, Brooks-Wilson A, Gilks CB, et al. Ovarian carcinoma Histotype: strengths and limitations of integrating morphology with Immunohistochemical predictions. Int J Gynecol Pathol. 2019;38(4):353–62. Al-Hussaini M, Stockman A, Foster H, McCluggage WG. WT-1 assists in distinguishing ovarian from uterine serous carcinoma and in distinguishing between serous and endometrioid ovarian carcinoma. Histopathology. 2004;44(2):109–15. Schiavone MB, Herzog TJ, Lewin SN, Deutsch I, Sun X, Burke WM, et al. Natural history and outcome of mucinous carcinoma of the ovary. Am J Obstet Gynecol. 2011;205(5):480 e1–8. Kobel M, Kalloger SE, Huntsman DG, Santos JL, Swenerton KD, Seidman JD, et al. Differences in tumor type in low-stage versus high-stage ovarian carcinomas. Int J Gynecol Pathol. 2010;29(3):203–11. Seidman JD, Horkayne-Szakaly I, Haiba M, Boice CR, Kurman RJ, Ronnett BM. The histologic type and stage distribution of ovarian carcinomas of surface epithelial origin. Int J Gynecol Pathol. 2004;23(1):41–4. Koonings PP, Campbell K, Mishell DR Jr, Grimes DA. Relative frequency of primary ovarian neoplasms: a 10-year review. Obstet Gynecol. 1989;74(6):921–6. Moh M, Krings G, Ates D, Aysal A, Kim GE, Rabban JT. SATB2 expression distinguishes ovarian metastases of colorectal and Appendiceal origin from primary ovarian tumors of mucinous or Endometrioid type. Am J Surg Pathol. 2016;40(3):419–32. Meagher NS, Wang L, Rambau PF, Intermaggio MP, Huntsman DG, Wilkens LR, et al. A combination of the immunohistochemical markers CK7 and SATB2 is highly sensitive and specific for distinguishing primary ovarian mucinous tumors from colorectal and appendiceal metastases. Mod Pathol. 2019;32(12):1834-46. Soslow RA. Histologic subtypes of ovarian carcinoma: an overview. Int J Gynecol Pathol. 2008;27(2):161–74. Ramalingam P. Morphologic, Immunophenotypic, and molecular features of epithelial ovarian Cancer. Oncology (Williston Park). 2016;30(2):166–76. Young RH, Oliva E, Scully RE. Small cell carcinoma of the ovary, hypercalcemic type. A clinicopathological analysis of 150 cases. Am J Surg Pathol. 1994;18(11):1102–16. Kupryjanczyk J, Dansonka-Mieszkowska A, Moes-Sosnowska J, Plisiecka-Halasa J, Szafron L, Podgorska A, et al. Ovarian small cell carcinoma of hypercalcemic type - evidence of germline origin and SMARCA4 gene inactivation. A pilot study. Pol J Pathol. 2013;64(4):238–46. Witkowski L, Carrot-Zhang J, Albrecht S, Fahiminiya S, Hamel N, Tomiak E, et al. Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat Genet. 2014;46(5):438–43. Niwa Y, Yamamuro O, Kato N, Tsuzuki T. Two cases of primary ovarian neuroblastoma arising from mature cystic teratomas. Gynecol Oncol Case Rep. 2013;5:58–60. Singh M, Arora P, Singh S, Bohara S, Khurana N, Zutshi V, et al. Adult neuroblastoma of the ovary: a rare tumor with review of literature. J Cancer Res Ther. 2010;6(3):367–9. Ahmed AA, Etemadmoghadam D, Temple J, Lynch AG, Riad M, Sharma R, et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol. 2010;221(1):49–56. Na K, Sung JY, Kim HS. TP53 mutation status of Tubo-ovarian and peritoneal high-grade serous carcinoma with a wild-type p53 Immunostaining pattern. Anticancer Res. 2017;37(12):6697–703. Kobel M, Piskorz AM, Lee S, Lui S, LePage C, Marass F, et al. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma. J Pathol Clin Res. 2016;2(4):247–58. Sieh W, Kobel M, Longacre TA, Bowtell DD, deFazio A, Goodman MT, et al. Hormone-receptor expression and ovarian cancer survival: an ovarian tumor tissue analysis consortium study. Lancet Oncol. 2013;14(9):853–62. Rambau P, Kelemen LE, Steed H, Quan ML, Ghatage P, Kobel M. Association of Hormone Receptor Expression with Survival in Ovarian Endometrioid Carcinoma: Biological Validation and Clinical Implications. Int J Mol Sci. 2017;18(3):515. Assem H, Rambau PF, Lee S, Ogilvie T, Sienko A, Kelemen LE, et al. High-grade Endometrioid carcinoma of the ovary: a Clinicopathologic study of 30 cases. Am J Surg Pathol. 2018;42(4):534–44. Rambau PF, Duggan MA, Ghatage P, Warfa K, Steed H, Perrier R, et al. Significant frequency of MSH2/MSH6 abnormality in ovarian endometrioid carcinoma supports histotype-specific Lynch syndrome screening in ovarian carcinomas. Histopathology. 2016;69(2):288–97.