Oscillations and Multiple Equilibria in Microvascular Blood Flow
Tóm tắt
Tài liệu tham khảo
Arciero JC, Secomb TW (2011) Spontaneous oscillations in a model for active control of microvessel diameters. Math Med Biol. doi:10.1093/imammb/dqr005
di Bernardo M, Budd CJ, Champneys AR, Kowalczyk P, Nordmark AB, Tost GO, Piiroinen PT (2008) Bifurcations in nonsmooth dynamical systems. SIAM Rev 50(4):629–701. doi:10.1137/050625060
Carr RT, Geddes JB, Wu F (2005) Oscillations in a simple microvascular network. Ann Biomed Eng 33(6):764–771. doi:10.1007/s10439-005-2345-2
Coombes S, Doole SH (2010) Neuronal population dynamics with post inhibitory rebound: a reduction to piecewise linear discontinuous circle maps. 11(3):193–217. doi:10.1080/02681119608806224
Damiano ER (1998) The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries. Microvasc Res 55(1):77–91. doi:10.1006/mvre.1997.2052
Davis JM, Pozrikidis C (2010) Numerical simulation of unsteady blood flow through capillary networks. Bull Math Biol 73(8):1857–1880. doi:10.1007/s11538-010-9595-3
Dercole F, Gragnani A, Rinaldi S (2007) Bifurcation analysis of piecewise smooth ecological models. Theor Popul Biol 72(2):197–213. doi:10.1016/j.tpb.2007.06.003
Fåhræus R (1929) Suspension stability of blood. Physiol Rev 9:241–274
Fåhræus R, Lindqvist T (1931) The viscosity of blood in narrow capillary tubes. J Physiol 96:562–568
Fenton BM, Carr RT, Cokelet GR (1985) Nonuniform red cell distribution in 20 to 100 \(\mu \)m bifurcations. Microvasc Res 29(1):103–126. doi:10.1016/0026-2862(85)90010-X
Forouzan O, Yang X, Sosa JM, Burns JM, Shevkoplyas SS (2012) Spontaneous oscillations of capillary blood flow in artificial microvascular networks. Microvasc Res 84(2):123–132. doi:10.1016/j.mvr.2012.06.006
Geddes JB, Carr RT, Karst N, Wu F (2007) The onset of oscillations in microvascular blood flow. SIAM J Appl Dyn Syst 6(4):694–727. doi:10.1137/060670699
Geddes JB, Carr RT, Wu F, Lao Y, Maher M (2010) Blood flow in microvascular networks: a study in nonlinear biology. Chaos Interdiscip J Nonlinear Sci 20(4):045,123. doi:10.1063/1.3530122
Karst CM, Storey BD, Geddes JB (2013) Laminar flow of two miscible fluids in a simple network. Phys Fluids 25(3):033,601. doi:10.1063/1.4794726
Karst NJ, Storey BD, Geddes JB (2014) Spontaneous oscillations in simple fluid networks. SIAM J Appl Dyn Syst 13(1):157–180. doi:10.1137/130926304
Krogh A (1921) Studies on the physiology of capillaries: II. The reactions to local stimuli of the blood-vessels in the skin and web of the frog. J Physiol (Lond) 55(5–6):412–422
Kuznetsov Y (2004) Elements of applied bifurcation theory. Springer, New York. doi:10.1007/978-1-4757-3978-7
Parthimos D, Osterloh K, Pries AR, Griffith TM (2004) Deterministic nonlinear characteristics of in vivoblood flow velocity and arteriolar diameter fluctuations. Phys Med Biol 49(9):1789–1802. doi:10.1088/0031-9155/49/9/014
Pop SR, Richardson G, Waters SL, Jensen OE (2007) Shock formation and non-linear dispersion in a microvascular capillary network. Math Med Biol 24(4):379–400. doi:10.1093/imammb/dqm007
Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P (1994) Resistance to blood flow in microvessels in vivo. Circ Res 75(5):904–915. doi:10.1161/01.RES.75.5.904
Rodgers GP, Schechter AN, Noguchi CT, Klein HG, Niehuis QW, Bonner RF (1984) Periodic microcirculatory flow in patients with sickle cell disease. N Engl J Med 311:1534–1538. doi:10.1056/NEJM198412133112403
Secomb TW, Hsu R (1996) Motion of red blood cells in capillaries with variable cross-sections. J Biomech Eng 118(4):538–544. doi:10.1115/1.2796041
Shevkoplyas SS, Gifford SC, Yoshida T, Bitensky MW (2003) Prototype of an in vitro model of the microcirculation. Microvas Res 65(2):132–136. doi:10.1016/S0026-2862(02)00034-1
Storey BD, Hellen DV, Karst NJ, Geddes JB (2015) Observations of spontaneous oscillations in simple two-fluid networks. Phys Rev E 91:023,004. doi:10.1103/PhysRevE.91.023004