Oscillations and Multiple Equilibria in Microvascular Blood Flow

Springer Science and Business Media LLC - Tập 77 - Trang 1377-1400 - 2015
Nathaniel J. Karst1, Brian D. Storey2, John B. Geddes2
1Babson College, Babson Park, USA
2Olin College, Needham, USA

Tóm tắt

We investigate the existence of oscillatory dynamics and multiple steady-state flow rates in a network with a simple topology and in vivo microvascular blood flow constitutive laws. Unlike many previous analytic studies, we employ the most biologically relevant models of the physical properties of whole blood. Through a combination of analytic and numeric techniques, we predict in a series of two-parameter bifurcation diagrams a range of dynamical behaviors, including multiple equilibria flow configurations, simple oscillations in volumetric flow rate, and multiple coexistent limit cycles at physically realizable parameters. We show that complexity in network topology is not necessary for complex behaviors to arise and that nonlinear rheology, in particular the plasma skimming effect, is sufficient to support oscillatory dynamics similar to those observed in vivo.

Tài liệu tham khảo

Arciero JC, Secomb TW (2011) Spontaneous oscillations in a model for active control of microvessel diameters. Math Med Biol. doi:10.1093/imammb/dqr005

di Bernardo M, Budd CJ, Champneys AR, Kowalczyk P, Nordmark AB, Tost GO, Piiroinen PT (2008) Bifurcations in nonsmooth dynamical systems. SIAM Rev 50(4):629–701. doi:10.1137/050625060

Carr RT, Geddes JB, Wu F (2005) Oscillations in a simple microvascular network. Ann Biomed Eng 33(6):764–771. doi:10.1007/s10439-005-2345-2

Coombes S, Doole SH (2010) Neuronal population dynamics with post inhibitory rebound: a reduction to piecewise linear discontinuous circle maps. 11(3):193–217. doi:10.1080/02681119608806224

Damiano ER (1998) The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries. Microvasc Res 55(1):77–91. doi:10.1006/mvre.1997.2052

Davis JM, Pozrikidis C (2010) Numerical simulation of unsteady blood flow through capillary networks. Bull Math Biol 73(8):1857–1880. doi:10.1007/s11538-010-9595-3

Dercole F, Gragnani A, Rinaldi S (2007) Bifurcation analysis of piecewise smooth ecological models. Theor Popul Biol 72(2):197–213. doi:10.1016/j.tpb.2007.06.003

Fåhræus R (1929) Suspension stability of blood. Physiol Rev 9:241–274

Fåhræus R, Lindqvist T (1931) The viscosity of blood in narrow capillary tubes. J Physiol 96:562–568

Fenton BM, Carr RT, Cokelet GR (1985) Nonuniform red cell distribution in 20 to 100 \(\mu \)m bifurcations. Microvasc Res 29(1):103–126. doi:10.1016/0026-2862(85)90010-X

Forouzan O, Yang X, Sosa JM, Burns JM, Shevkoplyas SS (2012) Spontaneous oscillations of capillary blood flow in artificial microvascular networks. Microvasc Res 84(2):123–132. doi:10.1016/j.mvr.2012.06.006

Geddes JB, Carr RT, Karst N, Wu F (2007) The onset of oscillations in microvascular blood flow. SIAM J Appl Dyn Syst 6(4):694–727. doi:10.1137/060670699

Geddes JB, Carr RT, Wu F, Lao Y, Maher M (2010) Blood flow in microvascular networks: a study in nonlinear biology. Chaos Interdiscip J Nonlinear Sci 20(4):045,123. doi:10.1063/1.3530122

Karst CM, Storey BD, Geddes JB (2013) Laminar flow of two miscible fluids in a simple network. Phys Fluids 25(3):033,601. doi:10.1063/1.4794726

Karst NJ, Storey BD, Geddes JB (2014) Spontaneous oscillations in simple fluid networks. SIAM J Appl Dyn Syst 13(1):157–180. doi:10.1137/130926304

Krogh A (1921) Studies on the physiology of capillaries: II. The reactions to local stimuli of the blood-vessels in the skin and web of the frog. J Physiol (Lond) 55(5–6):412–422

Kuznetsov Y (2004) Elements of applied bifurcation theory. Springer, New York. doi:10.1007/978-1-4757-3978-7

Parthimos D, Osterloh K, Pries AR, Griffith TM (2004) Deterministic nonlinear characteristics of in vivoblood flow velocity and arteriolar diameter fluctuations. Phys Med Biol 49(9):1789–1802. doi:10.1088/0031-9155/49/9/014

Pop SR, Richardson G, Waters SL, Jensen OE (2007) Shock formation and non-linear dispersion in a microvascular capillary network. Math Med Biol 24(4):379–400. doi:10.1093/imammb/dqm007

Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P (1994) Resistance to blood flow in microvessels in vivo. Circ Res 75(5):904–915. doi:10.1161/01.RES.75.5.904

Rodgers GP, Schechter AN, Noguchi CT, Klein HG, Niehuis QW, Bonner RF (1984) Periodic microcirculatory flow in patients with sickle cell disease. N Engl J Med 311:1534–1538. doi:10.1056/NEJM198412133112403

Secomb TW, Hsu R (1996) Motion of red blood cells in capillaries with variable cross-sections. J Biomech Eng 118(4):538–544. doi:10.1115/1.2796041

Shevkoplyas SS, Gifford SC, Yoshida T, Bitensky MW (2003) Prototype of an in vitro model of the microcirculation. Microvas Res 65(2):132–136. doi:10.1016/S0026-2862(02)00034-1

Storey BD, Hellen DV, Karst NJ, Geddes JB (2015) Observations of spontaneous oscillations in simple two-fluid networks. Phys Rev E 91:023,004. doi:10.1103/PhysRevE.91.023004