Oscillating composite asymmetric dark matter

Journal of High Energy Physics - Tập 2020 - Trang 1-30 - 2020
Masahiro Ibe1,2, Shin Kobayashi2, Ryo Nagai2, Wakutaka Nakano2
1Kavli IPMU (WPI), UTIAS, University of Tokyo, Kashiwa, Chiba, Japan
2ICRR, University of Tokyo, Kashiwa, Chiba, Japan

Tóm tắt

The asymmetric dark matter (ADM) scenario can solve the coincidence problem between the baryon and the dark matter (DM) abundance when the DM mass is of $$ \mathcal{O} $$(1) GeV. In the ADM scenarios, composite dark matter is particularly motivated, as it can naturally provide the DM mass in the $$ \mathcal{O} $$(1) GeV range and a large annihilation cross section simultaneously. In this paper, we discuss the indirect detection constraints on the composite ADM model. The portal operators connecting the B − L asymmetries in the dark and the Standard Model(SM) sectors are assumed to be generated in association with the seesaw mechanism. In this model, composite dark matter inevitably obtains a tiny Majorana mass which induces a pair-annihilation of ADM at late times. We show that the model can be efficiently tested by the searches for the γ-ray from the dwarf spheroidal galaxies and the interstellar electron/positron flux.

Từ khóa


Tài liệu tham khảo

S. Nussinov, Technocosmology: could a technibaryon excess provide a ‘natural’ missing mass candidate?, Phys. Lett.165B (1985) 55 [INSPIRE].

S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak Fermion Number Violation and the Production of Stable Particles in the Early Universe, Phys. Lett.B 241 (1990) 387 [INSPIRE].

S.M. Barr, Baryogenesis, sphalerons and the cogeneration of dark matter, Phys. Rev.D 44 (1991) 3062 [INSPIRE].

S. Dodelson, B.R. Greene and L.M. Widrow, Baryogenesis, dark matter and the width of the Z, Nucl. Phys.B 372 (1992) 467 [INSPIRE].

D.B. Kaplan, A single explanation for both the baryon and dark matter densities, Phys. Rev. Lett.68 (1992) 741 [INSPIRE].

V.A. Kuzmin, A simultaneous solution to baryogenesis and dark matter problems, Phys. Part. Nucl.29 (1998) 257 [hep-ph/9701269] [INSPIRE].

R. Foot and R.R. Volkas, Was ordinary matter synthesized from mirror matter? An Attempt to explain why ΩB ≈ 0.2ΩDark, Phys. Rev.D 68 (2003) 021304 [hep-ph/0304261] [INSPIRE].

R. Foot and R.R. Volkas, Explaining Ωbaryon ≈ 0.2Ωdarkthrough the synthesis of ordinary matter from mirror matter: A more general analysis, Phys. Rev.D 69 (2004) 123510 [hep-ph/0402267] [INSPIRE].

R. Kitano and I. Low, Dark matter from baryon asymmetry, Phys. Rev.D 71 (2005) 023510 [hep-ph/0411133] [INSPIRE].

S.B. Gudnason, C. Kouvaris and F. Sannino, Towards working technicolor: Effective theories and dark matter, Phys. Rev.D 73 (2006) 115003 [hep-ph/0603014] [INSPIRE].

D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric Dark Matter, Phys. Rev.D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].

H. Davoudiasl and R.N. Mohapatra, On Relating the Genesis of Cosmic Baryons and Dark Matter, New J. Phys.14 (2012) 095011 [arXiv:1203.1247] [INSPIRE].

K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys.A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].

K.M. Zurek, Asymmetric Dark Matter: Theories, Signatures and Constraints, Phys. Rept.537 (2014) 91 [arXiv:1308.0338] [INSPIRE].

Z. Berezhiani, Through the looking-glass: Alice’s adventures in mirror world, hep-ph/0508233 [INSPIRE].

D.S.M. Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, Composite Inelastic Dark Matter, Phys. Lett.B 692 (2010) 323 [arXiv:0903.3945] [INSPIRE].

H. An, S.-L. Chen, R.N. Mohapatra and Y. Zhang, Leptogenesis as a Common Origin for Matter and Dark Matter, JHEP03 (2010) 124 [arXiv:0911.4463] [INSPIRE].

D. Spier Moreira Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, The Cosmology of Composite Inelastic Dark Matter, JHEP06 (2010) 113 [arXiv:1003.4729] [INSPIRE].

P.-H. Gu, From Dirac neutrino masses to baryonic and dark matter asymmetries, Nucl. Phys.B 872 (2013) 38 [arXiv:1209.4579] [INSPIRE].

M.R. Buckley and E.T. Neil, Thermal dark matter from a confining sector, Phys. Rev.D 87 (2013) 043510 [arXiv:1209.6054] [INSPIRE].

W. Detmold, M. McCullough and A. Pochinsky, Dark Nuclei I: Cosmology and Indirect Detection, Phys. Rev.D 90 (2014) 115013 [arXiv:1406.2276] [INSPIRE].

P.-H. Gu, An SO(10) × SO(10)′ model for common origin of neutrino masses, ordinary and dark matter-antimatter asymmetries, JCAP12 (2014) 046 [arXiv:1410.5759] [INSPIRE].

S.J. Lonsdale and R.R. Volkas, Comprehensive asymmetric dark matter model, Phys. Rev.D 97 (2018) 103510 [arXiv:1801.05561] [INSPIRE].

M. Ibe, A. Kamada, S. Kobayashi and W. Nakano, Composite Asymmetric Dark Matter with a Dark Photon Portal, JHEP11 (2018) 203 [arXiv:1805.06876] [INSPIRE].

M. Ibe, A. Kamada, S. Kobayashi, T. Kuwahara and W. Nakano, Ultraviolet Completion of a Composite Asymmetric Dark Matter Model with a Dark Photon Portal, JHEP03 (2019) 173 [arXiv:1811.10232] [INSPIRE].

M. Ibe, A. Kamada, S. Kobayashi, T. Kuwahara and W. Nakano, Baryon-Dark Matter Coincidence in Mirrored Unification, Phys. Rev.D 100 (2019) 075022 [arXiv:1907.03404] [INSPIRE].

M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett.B 174 (1986) 45 [INSPIRE].

G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys.B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].

W. Buchmüller, R.D. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci.55 (2005) 311 [hep-ph/0502169] [INSPIRE].

S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept.466 (2008) 105 [arXiv:0802.2962] [INSPIRE].

P. Minkowski, μ → eγ at a Rate of One Out of 109Muon Decays?, Phys. Lett.67B (1977) 421 [INSPIRE].

T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc.C 7902131 (1979) 95 [INSPIRE].

M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc.C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

S.L. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser.B 61 (1980) 687.

R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett.44 (1980) 912 [INSPIRE].

M. Blennow, E. Fernandez-Martinez, O. Mena, J. Redondo and P. Serra, Asymmetric Dark Matter and Dark Radiation, JCAP07 (2012) 022 [arXiv:1203.5803] [INSPIRE].

Y. Cai, M.A. Luty and D.E. Kaplan, Leptonic Indirect Detection Signals from Strongly Interacting Asymmetric Dark Matter, arXiv:0909.5499 [INSPIRE].

M.R. Buckley and S. Profumo, Regenerating a Symmetry in Asymmetric Dark Matter, Phys. Rev. Lett.108 (2012) 011301 [arXiv:1109.2164] [INSPIRE].

M. Cirelli, P. Panci, G. Servant and G. Zaharijas, Consequences of DM/antiDM Oscillations for Asymmetric WIMP Dark Matter, JCAP03 (2012) 015 [arXiv:1110.3809] [INSPIRE].

S. Tulin, H.-B. Yu and K.M. Zurek, Oscillating Asymmetric Dark Matter, JCAP05 (2012) 013 [arXiv:1202.0283] [INSPIRE].

N. Okada and O. Seto, Originally Asymmetric Dark Matter, Phys. Rev.D 86 (2012) 063525 [arXiv:1205.2844] [INSPIRE].

E. Hardy, R. Lasenby and J. Unwin, Annihilation Signals from Asymmetric Dark Matter, JHEP07 (2014) 049 [arXiv:1402.4500] [INSPIRE].

S.-L. Chen and Z. Kang, Oscillating asymmetric sneutrino dark matter from the maximally U(1)Lsupersymmetric inverse seesaw, Phys. Lett.B 761 (2016) 296 [arXiv:1512.08780] [INSPIRE].

H. Fukuda, S. Matsumoto and S. Mukhopadhyay, Asymmetric dark matter in early Universe chemical equilibrium always leads to an antineutrino signal, Phys. Rev.D 92 (2015) 013008 [arXiv:1411.4014] [INSPIRE].

J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev.D 42 (1990) 3344 [INSPIRE].

M. Bauer, P. Foldenauer and J. Jaeckel, Hunting All the Hidden Photons, JHEP07 (2018) 094 [arXiv:1803.05466] [INSPIRE].

J.H. Chang, R. Essig and S.D. McDermott, Revisiting Supernova 1987A Constraints on Dark Photons, JHEP01 (2017) 107 [arXiv:1611.03864] [INSPIRE].

J.H. Chang, R. Essig and S.D. McDermott, Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion and an Axion-like Particle, JHEP09 (2018) 051 [arXiv:1803.00993] [INSPIRE].

M. Ibe, S. Matsumoto and T.T. Yanagida, The GeV-scale dark matter with B-L asymmetry, Phys. Lett.B 708 (2012) 112 [arXiv:1110.5452] [INSPIRE].

A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric Dark Matter from Leptogenesis, JHEP05 (2011) 106 [arXiv:1101.4936] [INSPIRE].

J.E. Gunn, B.W. Lee, I. Lerche, D.N. Schramm and G. Steigman, Some Astrophysical Consequences of the Existence of a Heavy Stable Neutral Lepton, Astrophys. J.223 (1978) 1015 [INSPIRE].

L. Bergstrom, Dark Matter Evidence, Particle Physics Candidates and Detection Methods, Annalen Phys.524 (2012) 479 [arXiv:1205.4882] [INSPIRE].

G. Gilmore et al., The observed properties of Dark Matter on small spatial scales, Astrophys. J.663 (2007) 948 [astro-ph/0703308] [INSPIRE].

A.W. McConnachie, The observed properties of dwarf galaxies in and around the Local Group, Astron. J.144 (2012) 4 [arXiv:1204.1562] [INSPIRE].

J. Mardon, Y. Nomura, D. Stolarski and J. Thaler, Dark Matter Signals from Cascade Annihilations, JCAP05 (2009) 016 [arXiv:0901.2926] [INSPIRE].

G. Elor, N.L. Rodd and T.R. Slatyer, Multistep cascade annihilations of dark matter and the Galactic Center excess, Phys. Rev.D 91 (2015) 103531 [arXiv:1503.01773] [INSPIRE].

G. Elor, N.L. Rodd, T.R. Slatyer and W. Xue, Model-Independent Indirect Detection Constraints on Hidden Sector Dark Matter, JCAP06 (2016) 024 [arXiv:1511.08787] [INSPIRE].

Y. Gao, A.V. Gritsan, Z. Guo, K. Melnikov, M. Schulze and N.V. Tran, Spin Determination of Single-Produced Resonances at Hadron Colliders, Phys. Rev.D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].

J. Liu, N. Weiner and W. Xue, Signals of a Light Dark Force in the Galactic Center, JHEP08 (2015) 050 [arXiv:1412.1485] [INSPIRE].

S.J. Orfanidis and V. Rittenberg, Nucleon-antinucleon annihilation into pions, Nucl. Phys.B 59 (1973) 570 [INSPIRE].

T. Armstrong et al., Measurement of Anti-neutron Proton Total and Annihilation Cross-sections From 100-MeV/c to 500-MeV/c, Phys. Rev.D 36 (1987) 659 [INSPIRE].

OBELIX collaboration, \( \overline{\mathrm{n}} \)p annihilation in flight in two mesons in the momentum range between 50-MeV/c and 400-MeV/c with OBELIX, Nucl. Phys. Proc. Suppl.56 (1997) 227 [INSPIRE].

R. Huo, S. Matsumoto, Y.-L. Sming Tsai and T.T. Yanagida, A scenario of heavy but visible baryonic dark matter, JHEP09 (2016) 162 [arXiv:1506.06929] [INSPIRE].

T.-G. Lee and C.-Y. Wong, Nuclear annihilation by antinucleons, Phys. Rev.C 93 (2016) 014616 [Erratum ibid.C 95 (2017) 029901] [arXiv:1509.06031] [INSPIRE].

K. Hayashi, K. Ichikawa, S. Matsumoto, M. Ibe, M.N. Ishigaki and H. Sugai, Dark matter annihilation and decay from non-spherical dark halos in galactic dwarf satellites, Mon. Not. Roy. Astron. Soc.461 (2016) 2914 [arXiv:1603.08046] [INSPIRE].

A. Geringer-Sameth, S.M. Koushiappas and M. Walker, Dwarf galaxy annihilation and decay emission profiles for dark matter experiments, Astrophys. J.801 (2015) 74 [arXiv:1408.0002] [INSPIRE].

Fermi-LAT collaboration, Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett.115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].

L.A. Fisk, Solar Modulation and a Galactic Origin for the Anomalous Component Observed in Low-Energy Cosmic Rays, Astrophys. J.206 (1976) 333 [INSPIRE].

E.C. Stone, A.C. Cummings, F.B. McDonald, B.C. Heikkila, N. Lal and W.R. Webber, Voyager 1 Observes Low-Energy Galactic Cosmic Rays in a Region Depleted of Heliospheric Ions, Science341 (2013) 150.

M. Boudaud, J. Lavalle and P. Salati, Novel cosmic-ray electron and positron constraints on MeV dark matter particles, Phys. Rev. Lett.119 (2017) 021103 [arXiv:1612.07698] [INSPIRE].

M. Cirelli et al., PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP03 (2011) 051 [Erratum ibid.10 (2012) E01] [arXiv:1012.4515] [INSPIRE].

J. Buch, M. Cirelli, G. Giesen and M. Taoso, PPPC 4 DM secondary: A Poor Particle Physicist Cookbook for secondary radiation from Dark Matter, JCAP09 (2015) 037 [arXiv:1505.01049] [INSPIRE].

F. Donato, N. Fornengo, D. Maurin and P. Salati, Antiprotons in cosmic rays from neutralino annihilation, Phys. Rev.D 69 (2004) 063501 [astro-ph/0306207] [INSPIRE].

J.F. Navarro, C.S. Frenk and S.D.M. White, A universal density profile from hierarchical clustering, Astrophys. J.490 (1997) 493 [astro-ph/9611107] [INSPIRE].

A. Burkert, The structure of dark matter halos in dwarf galaxies, IAU Symp.171 (1996) 175 [astro-ph/9504041] [INSPIRE].

D. Maurin, F. Melot and R. Taillet, A database of charged cosmic rays, Astron. Astrophys.569 (2014) A32 [arXiv:1302.5525] [INSPIRE].

Fermi-LAT and DES collaborations, Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT, Astrophys. J.834 (2017) 110 [arXiv:1611.03184] [INSPIRE].

e-ASTROGAM collaboration, Science with e-ASTROGAM: A space mission for MeV-GeV gamma-ray astrophysics, JHEAp19 (2018) 1 [arXiv:1711.01265] [INSPIRE].

thee-ASTROGAM collaboration, e-ASTROGAM: a space mission for MeV-GeV gamma-ray astrophysics, J. Phys. Conf. Ser.1181 (2019) 012044 [INSPIRE].

T. Sawano, K. Hattori and N. Higashi, SMILE: A Balloon-Borne sub-MeV/MeV Gamma-ray Compton Camera Using an Electron-TrackingGaseous TPC and a Scintillation Camera, in Proceedings, 32nd International Cosmic Ray Conference (ICRC 2011): Beijing, China, August 11–18, 2011, p. 183, [https://doi.org/10.7529/ICRC2011/V09/1120].

S. Aoki et al., Balloon-borne gamma-ray telescope with nuclear emulsion: overview and status, arXiv:1202.2529 [INSPIRE].

T. Aramaki, P. Hansson Adrian, G. Karagiorgi and H. Odaka, Dual MeV Gamma-Ray and Dark Matter Observatory — GRAMS Project, Astropart. Phys.114 (2020) 107 [arXiv:1901.03430] [INSPIRE].

PFS Team collaboration, Extragalactic science, cosmology and Galactic archaeology with the Subaru Prime Focus Spectrograph, Publ. Astron. Soc. Jap.66 (2014) R1 [arXiv:1206.0737] [INSPIRE].

P.F. Bedaque, M.I. Buchoff and R.K. Mishra, Sommerfeld enhancement from Goldstone pseudo-scalar exchange, JHEP11 (2009) 046 [arXiv:0907.0235] [INSPIRE].

Z.-P. Liu, Y.-L. Wu and Y.-F. Zhou, Sommerfeld enhancements with vector, scalar and pseudoscalar force-carriers, Phys. Rev.D 88 (2013) 096008 [arXiv:1305.5438] [INSPIRE].

B. Bellazzini, M. Cliche and P. Tanedo, Effective theory of self-interacting dark matter, Phys. Rev.D 88 (2013) 083506 [arXiv:1307.1129] [INSPIRE].

A. Sommerfeld, Über die Beugung und Bremsung der Elektronen, Annalen Phys.11 (1931) 257.

J. Hisano, S. Matsumoto and M.M. Nojiri, Unitarity and higher order corrections in neutralino dark matter annihilation into two photons, Phys. Rev.D 67 (2003) 075014 [hep-ph/0212022] [INSPIRE].

J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett.92 (2004) 031303 [hep-ph/0307216] [INSPIRE].

J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev.D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].

K. Blum, R. Sato and T.R. Slatyer, Self-consistent Calculation of the Sommerfeld Enhancement, JCAP06 (2016) 021 [arXiv:1603.01383] [INSPIRE].

B. Bellazzini, R. Franceschini, F. Sala and J. Serra, Goldstones in Diphotons, JHEP04 (2016) 072 [arXiv:1512.05330] [INSPIRE].