Orthonormal bases of compactly supported wavelets

Communications on Pure and Applied Mathematics - Tập 41 Số 7 - Trang 909-996 - 1988
Ingrid Daubechies1
1AT&T Bell Labs.#TAB#

Tóm tắt

Abstract

We construct orthonormal bases of compactly supported wavelets, with arbitrarily high regularity. The order of regularity increases linearly with the support width. We start by reviewing the concept of multiresolution analysis as well as several algorithms in vision decomposition and reconstruction. The construction then follows from a synthesis of these different approaches.

Từ khóa


Tài liệu tham khảo

10.1137/0515056

10.1016/0016-7142(84)90025-5

10.4064/sm-24-2-113-190

10.1016/0001-8708(75)90099-7

Wilson K. G. andKogut J. B. Physics Reports 12C 1974 p.77.

10.1007/978-1-4684-0121-9

Meyer Y. Principe d'incertitude bases hilbertiennes et algèbres d'opérateurs Séminaire Bourbaki 1985‐1986 nr. 662.

Tchamitchian P., 1986, Calcul symbolique sur les opérateurs de Calderón‐Zygmund et bases inconditionnelles de L2(ℝn, C. R. Acad. Sc. Paris. 303, série, 1, 215

Tchamitchian P. Biorthogonalité et théorie des opérateurs to be published in Rev. Mat. Iberoamericana.

Battle G. andFederbush P. Ondelettes and phase cell cluster expansions; a vindication Comm. Math. Phys. 1987.

10.1090/S0273-0979-1987-15521-2

Kronland‐Martinet R. Morlet J. andGrossmann A. Analysis of sound patterns through wavelet transforms to be published in International Journal on Pattern Analysis and Artificial Intelligence.

Mallat S. A theory for multiresolution signal decomposition: the wavelet transform Preprint GRASP Lab Dept. of Computer and Information Science Univ. of Pennsylvania to be published.

Grossmann A. Wavelet transforms and edge detection to be published in Stochastic Processes in Physics and Engineering (Ph. Blanchard L. Streit and M. Hasewinkel eds.)

10.1063/1.526761

1986, Examples, Ann. Inst. H. Poincaré, 45, 293

10.1063/1.1664570

10.1063/1.1664833

Paul T., 1985, Functions analytic on the half‐plane as quantum mechanical states, J. Math. Phys., 25

pp.3252–3263.Paul T. Affine coherent states and the radial Schrödinger equation. I. Radial harmonic oscillator and hydrogen atom to be published.

Grossmann A. andKronland R. Private demonstration.

10.1063/1.527388

Daubechies I. The wavelet transform time‐frequency localization and signal analysis Preprint AT&T Bell Laboratories; to be published.

Meyer Y. Ondelettes et functions splines Séminaire EDP Ecole Polytechnique Paris France December 1986 .

Lemarié P. G. Ondelettes à localisation exponentielle to be published in Journ. de MaTh. Pures et Appl.

Battle G. A block spin construction of ondelettes Part I: Lemarié functions Comm. Math. Phys.1987.

Mallat S. Multiresolution approximation and wavelets.Preprint GRASP Lab. Dept. of Computer and Information Science Univ. of Pennsylvania to be published.

10.1109/TCOM.1983.1095851

10.1145/245.247

Jaffard S. Lemarié P. G. Mallat S. andMeyer Y. Multiscale analysis unpublished memorandum.

Coifman R., The discrete wavelet transform

10.4171/RMI/22

10.1109/TASSP.1986.1164832

Auscher P. Thèse de Doctorat Université de Paris‐Dauphine1988.

Rioul O. private communication.

10.1007/978-3-642-61987-8

Meyer Y. Wavelets with compact support Zygmund Lectures (University of Chicago) May 1987 and private communication.

Deslauriers G. andDubuc S. Interpolation dyadique in Fractals; Dimensions non Entières et Applications ed. G. Cherbit Masson (Paris) 1987 pp.44–45. See also other references listed there.

Daubechies I. andLagarias J. Two‐scale difference equations. I. Global regularity of solutions and —. II. Infinite matrix products local regularity and fractals Preprints AT&T Bell Laboratories; to be published.