Origins of Cross-Orientation Suppression in the Visual Cortex

Journal of Neurophysiology - Tập 96 Số 4 - Trang 1755-1764 - 2006
Baowang Li1, Jeffrey Thompson, Thang Duong, Matthew R. Peterson, Ray Freeman2
1Group in Vision Science, School of Optometry, Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-2020, USA.
2University of California, Berkeley

Tóm tắt

The response of a neuron in striate cortex to an optimally oriented stimulus is suppressed by a superimposed orthogonal stimulus. The neural mechanism underlying this cross-orientation suppression (COS) may arise from intracortical or subcortical processes or from both. Recent studies of the temporal frequency and adaptation properties of COS suggest that depression at thalamo-cortical synapses may be the principal mechanism. To examine the possible role of synaptic depression in relation to COS, we measured the recovery time course of COS. We find it too rapid to be explained by synaptic depression. We also studied potential subcortical processes by measuring single cell contrast response functions for a population of LGN neurons. In general, contrast saturation is a consistent property of LGN neurons. Combined with rectifying nonlinearities in the LGN and spike threshold nonlinearities in visual cortex, contrast saturation in the LGN can account for most of the COS that is observed in the visual cortex.

Từ khóa


Tài liệu tham khảo

10.1038/81453

10.1126/science.275.5297.221

10.1017/S0952523800010336

10.1152/jn.1982.48.1.217

Allison JD, Smith KR, and Bonds AB. Temporal-frequency tuning of cross-orientation suppression in the cat striate cortex. Vis Neurosci 18: 941–948, 2001.

10.1126/science.290.5498.1968

10.1523/JNEUROSCI.22-08-03189.2002

10.1016/0042-6989(91)90201-F

10.1017/S0952523800004995

10.1073/pnas.92.9.3844

10.1007/BF00234129

10.1017/S0952523800004314

10.1523/JNEUROSCI.1445-05.2005

10.1371/journal.pbio.0020264

10.1523/JNEUROSCI.20-01-00470.2000

10.1126/science.8191289

10.1523/JNEUROSCI.17-21-08621.1997

10.1523/JNEUROSCI.22-22-10053.2002

10.1016/S0028-3908(98)00069-0

10.1016/S0042-6989(97)00100-4

10.1523/JNEUROSCI.18-12-04785.1998

10.1016/0959-4388(92)90186-O

10.1016/S0896-6273(02)00659-1

10.1007/BF00233183

10.1007/BF00237410

10.1152/jn.1992.68.1.144

10.1523/JNEUROSCI.08-04-01172.1988

10.1016/S0896-6273(02)00819-X

10.1098/rspb.1971.0080

10.1007/BF00337286

10.1017/S0952523800011317

10.1017/S0952523800009640

10.1093/brain/31.1.45

10.1113/jphysiol.1962.sp006837

10.1152/jn.2001.86.4.1803

10.1152/jn.00203.2005

10.1002/(SICI)1096-9861(19961118)375:3<363::AID-CNE2>3.0.CO;2-0

10.1016/j.jphysparis.2003.09.019

10.1073/pnas.110135097

10.1098/rspb.1982.0078

10.1007/BF00247294

10.1016/S0959-440X(02)00360-3

10.1038/298266a0

10.1152/jn.1985.54.3.651

10.1152/jn.1981.46.2.260

10.1038/nn1660

10.1038/nn1310

10.1038/378281a0

Sanchez-Vives MV, McCormick DA, and Nowak LG. Is synaptic depression prevalent in vivo and does it contribute to contrast adaptation? Soc Neurosci Abstr 24: 896, 1998.

10.1523/JNEUROSCI.20-11-04267.2000

10.1152/jn.1990.64.1.206

10.1007/BF00238641

10.1016/0042-6989(90)90123-3

10.1016/S0042-6989(97)00413-6

10.1523/JNEUROSCI.0862-05.2005

10.1038/292543a0

10.1113/jphysiol.1978.sp012571

10.1113/jphysiol.1979.sp012765

10.1023/A:1015760707294

10.1023/A:1020158106603

10.1017/S0952523800008518

Smith MA, Bair W, Cavanaugh JR, and Movshon JA. Latency of inhibition from inside and outside the classical receptive field in macaque V1 neurons. J Vis 1: 35a, 2001.

10.1523/JNEUROSCI.5542-06.2006

10.1523/JNEUROSCI.15-08-05448.1995

10.1016/0042-6989(85)90060-4

10.1007/BF00270694

10.1007/BF00229326

10.1523/JNEUROSCI.18-15-05908.1998

10.1523/JNEUROSCI.17-20-07926.1997

10.1523/JNEUROSCI.19-11-04293.1999

10.1016/S0166-2236(96)20027-X

10.1152/jn.1998.79.1.227

10.1523/JNEUROSCI.21-14-05203.2001