Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics

Journal of Applied Physics - Tập 105 Số 9 - 2009
Wook Jo1, Torsten Granzow1, Emil Aulbach1, Jürgen Rödel1, Dragan Damjanović2
1Technische Universität Darmstadt 1 Institute of Materials Science, , 64287 Darmstadt, Germany
2EPFL 2 Ceramics Laboratory, , Lausanne CH-1015, Switzerland

Tóm tắt

The mechanism of the giant unipolar strain recently observed in a lead-free piezoceramic, 0.92(Bi0.5Na0.5)TiO3−0.06BaTiO3−0.02(K0.5Na0.5)NbO3 [S.-T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rödel, Appl. Phys. Lett. 91, 112906 (2007) was investigated. The validity of the previously proposed mechanism that the high strain comes both from a significant volume change during the field-induced phase transition, from an antiferroelectric to a ferroelectric phase and the domain contribution from the induced ferroelectric phase was examined. Monitoring the volume changes from the simultaneously measured longitudinal and transverse strains on disk-shaped samples showed that the phase transition in this specific material does not involve any notable volume change, which indicates that there is little contribution from a volume change due to the phase transition to the total strain response. Temperature dependent hysteresis measurements on unpoled samples of a nearby ferroelectric composition, 0.93(Bi0.5Na0.5)TiO3−0.06BaTiO3−0.01(K0.5Na0.5)NbO3 demonstrated that the origin of the large strain is due to the presence of a nonpolar phase that brings the system back to its unpoled state once the applied electric field is removed, which leads to a large unipolar strain.

Từ khóa


Tài liệu tham khảo

J. Am. Ceram. Soc.

2004, Nature (London), 432, 84, 10.1038/nature03028

2004, J. Electroceram., 13, 385, 10.1007/s10832-004-5130-y

2007, J. Electroceram., 19, 113, 10.1007/s10832-007-9047-0

2007, Appl. Phys. Lett., 91, 112906, 10.1063/1.2783200

2008, Jpn. J. Appl. Phys., 47, 3787, 10.1143/JJAP.47.3787

2008, Jpn. J. Appl. Phys., 47, 7702, 10.1143/JJAP.47.7702

2009, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 368, 10.1109/TUFFC.2009.1046

2009, Scr. Mater., 60, 251, 10.1016/j.scriptamat.2008.10.014

1997, J. Appl. Phys., 82, 1798, 10.1063/1.365982

2009, Appl. Phys. Lett., 94, 042909, 10.1063/1.3076109

2008, J. Appl. Phys., 103, 034108, 10.1063/1.2838476

1974, Ferroelectrics, 7, 347, 10.1080/00150197408238042

1988, Ferroelectrics, 77, 107, 10.1080/00150198808223232

2005, Ferroelectrics, 315, 123, 10.1080/001501990910276

2008, Chem. Mater., 20, 5061, 10.1021/cm8004634

2007, Acta Mater., 55, 5780, 10.1016/j.actamat.2007.06.035

1991, Jpn. J. Appl. Phys., Part 1, 30, 2236, 10.1143/JJAP.30.2236

2008, J. Appl. Phys., 103, 034107, 10.1063/1.2838472

2001, J. Appl. Phys., 90, 1496, 10.1063/1.1383266

2006, J. Appl. Phys., 100, 124111, 10.1063/1.2407269

2006, Mater. Chem. Phys., 98, 9, 10.1016/j.matchemphys.2004.09.046

2009, Acta Mater., 57, 77, 10.1016/j.actamat.2008.08.057