Orientation mapping of graphene using 4D STEM-in-SEM

Ultramicroscopy - Tập 219 - Trang 113137 - 2020
Benjamin W. Caplins1, Jason D. Holm1, Ryan M. White1, Robert R. Keller1
1National Institute of Standards and Technology, Applied Chemicals and Materials Division, Boulder, CO, 80305, United States

Tài liệu tham khảo

Butler, 2013, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano, 7, 2898, 10.1021/nn400280c Yasaei, 2015, Bimodal phonon scattering in graphene grain boundaries, Nano Lett., 15, 4532, 10.1021/acs.nanolett.5b01100 Tsen, 2012, Tailoring electrical transport across grain boundaries in polycrystalline graphene, Science, 336, 1143, 10.1126/science.1218948 Lee, 2013, High-strength chemical-vapor-deposited graphene and grain boundaries, Science, 340, 1073, 10.1126/science.1235126 Zhang, 2013, Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides, ACS Nano, 7, 10475, 10.1021/nn4052887 Batson, 2002, Sub-ångstrom resolution using aberration corrected electron optics, Nature, 418, 617, 10.1038/nature00972 Gass, 2008, Free-standing graphene at atomic resolution, Nature Nanotechnol., 3, 676, 10.1038/nnano.2008.280 Huang, 2011, Grains and grain boundaries in single-layer graphene atomic patchwork quilts, Nature, 469, 389, 10.1038/nature09718 Kim, 2011, Grain boundary mapping in polycrystalline graphene, ACS Nano, 5, 2142, 10.1021/nn1033423 Han, 2018, Strain mapping of two-dimensional heterostructures with subpicometer precision, Nano Lett., 18, 3746, 10.1021/acs.nanolett.8b00952 Gammer, 2015, Diffraction contrast imaging using virtual apertures, Ultramicroscopy, 155, 1, 10.1016/j.ultramic.2015.03.015 Konno, 2014, Lattice imaging at an accelerating voltage of 30kv using an in-lens type cold field-emission scanning electron microscope, Ultramicroscopy, 145, 28, 10.1016/j.ultramic.2013.09.001 Sun, 2018, On the progress of scanning transmission electron microscopy (STEM) imaging in a scanning electron microscope, Microsc. Microanal., 24, 99, 10.1017/S1431927618000181 Brodusch, 2019, Electron energy-loss spectroscopy (EELS) with a cold-field emission scanning electron microscope at low accelerating voltage in transmission mode, Ultramicroscopy, 203, 21, 10.1016/j.ultramic.2018.12.015 Arrighi, 1999, The global market, J. World-Syst. Res., 5, 216, 10.5195/jwsr.1999.129 Komsa, 2012, Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.035503 Choi, 2016, A low-energy electron beam does not damage single-walled carbon nanotubes and graphene, J. Phys. Chem. Lett., 7, 4739, 10.1021/acs.jpclett.6b02185 Reimer, 2008, Transmission Electron Microscopy Caplins, 2019, Orientation mapping of graphene in a scanning electron microscope, Carbon, 149, 400, 10.1016/j.carbon.2019.04.042 Schweizer, 2018, In situ manipulation and switching of dislocations in bilayer graphene, Sci. Adv., 4, 1, 10.1126/sciadv.aat4712 Caplins, 2019, Transmission imaging with a programmable detector in a scanning electron microscope, Ultramicroscopy, 196, 40, 10.1016/j.ultramic.2018.09.006 Caplins, 2019, A programmable dark-field detector for imaging two-dimensional materials in the scanning electron microscope, 13 Sunaoshi, 2016, STEM/SEM, chemical analysis, atomic resolution and surface imaging at < = 30 kv with no aberration correction for nanomaterials on graphene support, Microsc. Microanal., 22, 604, 10.1017/S1431927616003871 Fundenberger, 2016, Orientation mapping by transmission-SEM with an on-axis detector, Ultramicroscopy, 161, 17, 10.1016/j.ultramic.2015.11.002 Vespucci, 2017, Exploring transmission Kikuchi diffraction using a Timepix detector, J. Instrum., 12, C02075, 10.1088/1748-0221/12/02/C02075 Demers, 2017, Low accelerating voltage scanning transmitted electron microscope: Imaging, diffraction, X-ray microanalysis, and electron energy-loss spectroscopy at the nanoscale, Microsc. Microanal., 23, 528, 10.1017/S1431927617003324 Rudinsky, 2019, Wave-packet numerical investigation of thermal diffuse scattering: A time-dependent quantum approach to electron diffraction simulations, Micron, 126, 10.1016/j.micron.2019.102737 Schweizer, 2020, Low energy nano diffraction (LEND) – a versatile diffraction technique in SEM, Ultramicroscopy, 10.1016/j.ultramic.2020.112956 Wright, 2015, Electron imaging with an EBSD detector, Ultramicroscopy, 148, 132, 10.1016/j.ultramic.2014.10.002 Sneddon, 2016, Transmission kikuchi diffraction in a scanning electron microscope: A review, Mater. Sci. Eng. R: Rep., 110, 1, 10.1016/j.mser.2016.10.001 Lenthe, 2018, Advanced detector signal acquisition and electron beam scanning for high resolution SEM imaging, Ultramicroscopy, 195, 93, 10.1016/j.ultramic.2018.08.025 Hoess, 2000, Time-integrated phosphor behavior in gated image intensifier tubes, Image Intensif. Appl. II, 4128, 23 Holm, 2018, Scattering intensity distribution dependence on collection angles in annular dark-field STEM-in-SEM images, Ultramicroscopy, 195, 12, 10.1016/j.ultramic.2018.06.007 Savitzky, 2020 Guizar-Sicairos, 2008, Efficient subpixel image registration algorithms, Opt. Lett., 33, 156, 10.1364/OL.33.000156 Meyer, 2007, On the roughness of single- and bi-layer graphene membranes, Solid State Commun., 143, 101, 10.1016/j.ssc.2007.02.047 Liu, 2017, Healing X-ray scattering images, IUCrJ, 4, 455, 10.1107/S2052252517006212 Kovesi, 2015, 1 Lin, 2012, Graphene annealing: How clean can it be?, Nano Lett., 12, 414, 10.1021/nl203733r Li, 2009, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324, 1312, 10.1126/science.1171245 Reimer, 1998, Scanning Electron Microscopy, 10.1007/978-3-540-38967-5_2 B. Zhang, J. Zerubia, Point-spread function models, 46 (10) (2007) 1819–1829. Brown, 2012, Twinning and twisting of tri- and bilayer graphene, Nano Lett., 12, 1609, 10.1021/nl204547v Ping, 2012, Layer number and stacking sequence imaging of few-layer graphene by transmission electron microscopy, Nano Lett., 12, 4635, 10.1021/nl301932v H.M. Merklinger, Focusing the View Camera, internet Edition, Dartmouth, Nova Scotia, 2007. Goulden, 2018, The benefits and applications of a CMOS-based EBSD detector, Microsc. Microanal., 24, 1128, 10.1017/S1431927618006128 Hase, 1990, Phosphor materials for cathode-ray tubes, Adv. Electron. Electron Phys., 79, 271, 10.1016/S0065-2539(08)60600-9 Ophus, 2019, Four-dimensional scanning transmission electron microscopy (4D-STEM): From scanning nanodiffraction to ptychography and beyond, Microsc. Microanal., 25, 563, 10.1017/S1431927619000497 Tate, 2016, High dynamic range pixel array detector for scanning transmission electron microscopy, Microsc. Microanal., 22, 237, 10.1017/S1431927615015664 Wilkinson, 2013, Direct detection of electron backscatter diffraction patterns, Phys. Rev. Lett., 111, 1, 10.1103/PhysRevLett.111.065506 Vespucci, 2015, Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns, Phys. Rev. B, 92, 10.1103/PhysRevB.92.205301 Vystavěl, 2018, Tilt-free EBSD, Microsc. Microanal., 24, 1126, 10.1017/S1431927618006116 Adhyaksa, 2018, Understanding detrimental and beneficial grain boundary effects in halide perovskites, Adv. Mater., 30, 1, 10.1002/adma.201804792 Mingard, 2018, Practical application of direct electron detectors to EBSD mapping in 2D and 3D, Ultramicroscopy, 184, 242, 10.1016/j.ultramic.2017.09.008