Orientation Maps in V1 and Non-Euclidean Geometry

The Journal of Mathematical Neuroscience - Tập 5 - Trang 1-45 - 2015
Alexandre Afgoustidis1
1Institut de Mathématiques de Jussieu-Paris Rive Gauche, Universite Paris 7 Denis Diderot, Paris, France

Tóm tắt

In the primary visual cortex, the processing of information uses the distribution of orientations in the visual input: neurons react to some orientations in the stimulus more than to others. In many species, orientation preference is mapped in a remarkable way on the cortical surface, and this organization of the neural population seems to be important for visual processing. Now, existing models for the geometry and development of orientation preference maps in higher mammals make a crucial use of symmetry considerations. In this paper, we consider probabilistic models for V1 maps from the point of view of group theory; we focus on Gaussian random fields with symmetry properties and review the probabilistic arguments that allow one to estimate pinwheel densities and predict the observed value of π. Then, in order to test the relevance of general symmetry arguments and to introduce methods which could be of use in modeling curved regions, we reconsider this model in the light of group representation theory, the canonical mathematics of symmetry. We show that through the Plancherel decomposition of the space of complex-valued maps on the Euclidean plane, each infinite-dimensional irreducible unitary representation of the special Euclidean group yields a unique V1-like map, and we use representation theory as a symmetry-based toolbox to build orientation maps adapted to the most famous non-Euclidean geometries, viz. spherical and hyperbolic geometry. We find that most of the dominant traits of V1 maps are preserved in these; we also study the link between symmetry and the statistics of singularities in orientation maps, and show what the striking quantitative characteristics observed in animals become in our curved models.

Tài liệu tham khảo

Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160(1):106–54. Hubel DH, Wiesel TN. Receptive fields of single neurones in the cat’s striate cortex. J Physiol. 1959;148(3):574–91. De Angelis GC, Ohzawa I, Freeman RD. Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. I. General characteristics and postnatal development. J Neurophysiol. 1993;69:1091–117. Cocci G, Barbieri D, Sarti A. Spatiotemporal receptive fields of cells in V1 are optimally shaped for stimulus velocity estimation. J Opt Soc Am A. 2001;29(1):130–8. Bonhoeffer T, Grinvald A. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature. 1991;353(6343):429–31. Bonhoeffer T, Grinvald A. The layout of iso-orientation domains in area 18 of cat visual cortex: optical imaging reveals a pinwheel-like organization. J Neurosci. 1996;13:4157–80. Bosking WH, Zhang Y, Schofield B, Fitzpatrick D. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci. 1997;17(6):2112–27. Hubel DH, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968;195(1):215–43. Ohki K, Chung S, Kara P, Hubener M, Bonhoeffer T, Reid RC. Highly ordered arrangement of single neurons in orientation pinwheels. Nature. 2006;442(7105):925–8. Chalupa LM, Werner JS, editors. The visual neurosciences. Vol. 1. Cambridge: MIT Press; 2004. Kaschube M, Schnabel M, Lowel S, Coppola DM, White LE, Wolf F. Universality in the evolution of orientation columns in the visual cortex. Science. 2010;330(6007):1113–6. Wolf F, Geisel T. Spontaneous pinwheel annihilation during visual development. Nature. 1998;395(6697):73–8. Petitot J. Neurogéométrie de la vision: modeles mathematiques et physiques des architectures fonctionnelles. Paris: Editions Ecole Polytechnique; 2008. Ernst UA, Pawelzik KR, Sahar-Pikielny C, Tsodyks MV. Intracortical origin of visual maps. Nat Neurosci. 2001;4(4):431–6. Maffei L, Galli-Resta L. Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. Proc Natl Acad Sci USA. 1990;87(7):2861–4. Yu H, Farley BJ, Jin DZ, Sur M. The coordinated mapping of visual space and response features in visual cortex. Neuron. 1995;47(2):267–80. Reichl L, Heide D, Lowel S, Crowley JC, Kaschube M, et al.. Coordinated optimization of visual cortical maps (I) symmetry-based analysis. PLoS Comput Biol. 2012;8(11):e1002466. Swindale NV. A model for the formation of orientation columns. Proc R Soc Lond B, Biol Sci. 1982;215(1199):211–30. Hubel DH. Eye, brain, and vision. Scientific American library: Scientific American books; 1995. Kaschube M. Neural maps versus salt-and-pepper organization in visual cortex. Curr Opin Neurobiol. 2014;24:95–102. Van Hooser SD, Heimel JA, Nelson SB. Functional cell classes and functional architecture in the early visual system of a highly visual rodent. Prog Brain Res. 2005;149:127–45. Swindale NV. The development of topography in the visual cortex: a review of models. Netw Comput Neural Syst. 1996;7(2):161–247. Kaschube M, Wolf F, Geisel T, Lowel S. Genetic influence on quantitative features of neocortical architecture. J Neurosci. 2002;22(16):7206–17. Keil W, Kaschube M, Schnabel M, Kisvarday ZF, Löwel S, Coppola DM, Wolf F. Response to comment on “Universality in the evolution of orientation columns in the visual cortex”. Science. 2012;336(6080):413. Miller KD. π = visual cortex. Science. 2010;330:1059–60. Wolf F, Geisel T. Universality in visual cortical pattern formation. J Physiol (Paris). 2003;97(2):253–64. Schnabel M, Kaschube M, Löwel S, Wolf F. Random waves in the brain: symmetries and defect generation in the visual cortex. Eur Phys J Spec Top. 2007;145(1):137–57. Hepp K. On Listing’s law. Commun Math Phys. 1990;132:285–92. Dahlem MA, Tusch J. Predicted selective increase of cortical magnification due to cortical folding. J Math Neurosci. 2012;2(1):14. Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC. Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philos Trans R Soc Lond B, Biol Sci. 2001;356(1407):299–330. Schnabel M. A symmetry of the visual world in the architecture of the visual cortex. Ph.D. thesis, University of Goettingen; 2008. Van Essen DC. Cerebral cortical folding patterns in primates: why they vary and what they signify. In: Kaas JH, editor. Evolution of nervous systems. San Diego: Elsevier; 2006. p. 267–76. Rajimehr R, Tootell RBH. Does retinotopy influence cortical folding in primate visual cortex? J Neurosci. 2009;29(36):11149–52. Afgoustidis A. Monochromaticity of orientation maps in V1 implies minimum variance for hypercolumn size. J Math Neurosci. 2015;5:10. Nauhaus I, Nielsen K, Disney A, Callaway E. Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex. Nat Neurosci. 2012;15:1683–90. Levy P. Processus stochastiques et mouvement brownien. Paris: Gauthiers Villars; 1948. Abrahamsen P. A review of Gaussian random fields and correlation functions. Norsk Regnesentral; 1995. Adler RJ, Taylor JE. Random fields and geometry. Berlin: Springer; 2009. Barbieri D, Citti G, Sanguinetti G, Sarti A. An uncertainty principle underlying the functional architecture of V1. J Physiol (Paris). 2012;106(5):183–93. Cover TM, Thomas JA. Elements of information theory. New York: Wiley; 1991. Dudley RM. Real analysis and probability. Cambridge studies in advanced mathematics, vol. 74. Cambridge: Cambridge University Press; 2002. Niebur E, Worgotter F. Design principles of columnar organization in visual cortex. Neural Comput. 1994;6(4):602–14. Gurarie D. Symmetries and Laplacians: introduction to harmonic analysis, group representations and applications. London: Dover Publications; 2007. Weyl H. The classical groups: their invariants and representations. Princeton: Princeton University Press; 1946. Sugiura M. Unitary representations and harmonic analysis: an introduction. New York: Elsevier; 1990. Cramer H, Leadbetter MR. Stationary and related stochastic processes. Sample function properties and their applications. New York: Wiley; 1967. Berry MV, Dennis MR. Phase singularities in isotropic random waves. Proc R Soc Lond A. 2000;456(2001):2059–79. Azais JM, Wschebor M. Level sets and extrema of random processes and fields. New York: Wiley; 2009. Azais JM, Leon JR, Wschebor M. Rice formulae and Gaussian waves. Bernoulli. 2011;17(1):170–93. Klein F. A comparative review of recent researches in geometry, translated by M. W. Haskell. Bull Am Math Soc. 1892;2:215–49. Sharpe RW. Differential geometry: Cartan’s generalization of Klein’s Erlangen program. Berlin: Springer; 1997. Helgason S. Differential geometry, Lie groups, and symmetric spaces. New York: Academic Press; 1979. Helgason S. Groups & geometric analysis: Radon transforms, invariant differential operators and spherical functions. New York: Academic Press; 1984. Mackey GW. Harmonic analysis as the exploitation of symmetry—a historical survey. Bull Am Math Soc. 1980;3(1):543–698. Vilenkin NI. Representation of Lie groups and special functions: simplest Lie groups, special functions, and integral transforms. Berlin: Springer; 1991. Weyl H. Gruppentheorie und quantenmechanik. Zurich; 1928. Wigner E. On unitary representations of the inhomogeneous Lorentz group. Ann Math. 1939;40(1):149–204. Barbieri D, Citti G. Reproducing kernel Hilbert spaces of CR functions for the Euclidean motion group. Anal Appl. 2015;13:331. Chossat P, Faugeras O. Hyperbolic planforms in relation to visual edges and textures perception. PLoS Comput Biol. 2009;5(12):e1000625. Knapp AW. Lie groups: beyond an introduction. Berlin: Springer; 2008. Harish-Chandra. Spherical functions on a semisimple Lie group. I. Am J Math. 1958;80:241–310. Helgason S. Geometric analysis on symmetric spaces. Providence: Am. Math. Soc.; 2008. Yaglom AM. Second-order homogeneous random fields. In: Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, volume 2: contributions to probability theory. The Regents of the University of California; 1961. Escher MC. L’oeuvre graphique. Cologne: Taschen; 2001. Nye JF, Berry MV. Dislocations in wave trains. Proc R Soc Lond Ser A. 1974;336:165–90. Karman GP, Beijersbergen MW, van Duijl A, Woerdman JP. Creation and annihilation of phase singularities in a focal field. Opt Lett. 1996;22:1503–5. Inouye S, Gupta S, Rosenband T, Chikkatur AP, Gorlitz A, Gustavson TL, Ketterle W. Observation of vortex phase singularities in Bose–Einstein condensates. Phys Rev Lett. 2001;87(8):080402. Courant R, Hilbert D. Methods of mathematical physics. New York: Interscience; 1953. Nicolaescu L. Critical sets of random smooth functions on compact manifolds. arXiv:1008.5085 (2010). Wolf F. Symmetry, multistability, and long-range interactions in brain development. Phys Rev Lett. 2005;95:208701. Kaschube M, Schnabel M, Wolf F. Self-organization and the selection of pinwheel density in visual cortical development. New J Phys. 2008;10:015009. Kuo HH. Introduction to stochastic integration. Berlin: Springer; 2006.