Oridonin induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
Koppenol WH, Bounds PL, Dang CV . Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11: 325–337.
Adekola K, Rosen ST, Shanmugam M . Glucose transporters in cancer metabolism. Curr Opin Oncol 2012; 24: 650–654.
Flaveny CA, Griffett K, El-Gendy Bel D, Kazantzis M, Sengupta M, Amelio AL et al. Broad anti-tumor activity of a small molecule that selectively targets the Warburg effect and lipogenesis. Cancer Cell 2015; 28: 42–56.
Watson J . Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol 2013; 3: 120144.
Zhao Y, Butler EB, Tan M . Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 2013; 4: e532.
Cheong H, Lu C, Lindsten T, Thompson CB . Therapeutic targets in cancer cell metabolism and autophagy. Nat Biotechnol 2012; 30: 671–678.
Levine AJ, Puzio-Kuter AM . The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 2010; 330: 1340–1344.
Liu Q, Chen L, Hu L, Guo Y, Shen X . Small molecules from natural sources, targeting signaling pathways in diabetes. Biochim Biophys Acta 2010; 1799: 854–865.
Flati V, Pasini E, D'Antona G, Speca S, Toniato E, Martinotti S . Intracellular mechanisms of metabolism regulation: the role of signaling via the mammalian target of rapamycin pathway and other routes. Am J Cardiol 2008; 101: 16E–21E.
Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006; 55: 2256–2264.
Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H et al. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther 2012; 11: 1672–1682.
Ikezoe T, Chen SS, Tong XJ, Heber D, Taguchi H, Koeffler HP . Oridonin induces growth inhibition and apoptosis of a variety of human cancer cells. Int J Oncol 2003; 23: 1187–1193.
Fujita E, Nagao Y, Node M, Kaneko K, Nakazawa S, Kuroda H . Antitumor activity of the Isodon diterpenoids: structural requirements for the activity. Experientia 1976; 32: 203–206.
Li X, Li X, Wang J, Ye Z, Li JC . Oridonin up-regulates expression of P21 and induces autophagy and apoptosis in human prostate cancer cells. Int J Biol Sci 2012; 8: 901–912.
Zhang YH, Wu YL, Tashiro S, Onodera S, Ikejima T . Reactive oxygen species contribute to oridonin-induced apoptosis and autophagy in human cervical carcinoma HeLa cells. Acta Pharmacol Sin 2011; 32: 1266–1275.
Zhu Y, Xie L, Chen G, Wang H, Zhang R . Effects of oridonin on proliferation of HT29 human colon carcinoma cell lines both in vitro and in vivo in mice. Pharmazie 2007; 62: 439–444.
Li CY, Wang EQ, Cheng Y, Bao JK . Oridonin: an active diterpenoid targeting cell cycle arrest, apoptotic and autophagic pathways for cancer therapeutics. Int J Biochem Cell Biol 2011; 43: 701–704.
Cheng Y, Qiu F, Ikejima T . Molecular mechanisms of oridonin-induced apoptosis and autophagy in murine fibrosarcoma L929 cells. Autophagy 2009; 5: 430–431.
Zang L, He H, Xu Q, Yu Y, Zheng N, Liu W et al. Reactive oxygen species H(2)O(2) and OH, but not O(2)(-) promote oridonin-induced phagocytosis of apoptotic cells by human histocytic lymphoma U937 cells. Int Immunopharmacol 2013; 15: 414–423.
Zhou GB, Kang H, Wang L, Gao L, Liu P, Xie J et al. Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent antitumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. Blood 2007; 109: 3441–3450.
Huang HL, Weng HY, Wang LQ, Yu CH, Huang QJ, Zhao PP et al. Triggering Fbw7-mediated proteasomal degradation of c-Myc by oridonin induces cell growth inhibition and apoptosis. Mol Cancer Ther 2012; 11: 1155–1165.
Jin LH, Wei C . Role of microRNAs in the Warburg effect and mitochondrial metabolism in cancer. Asian Pac J Cancer Prev 2014; 15: 7015–7019.
Lambert DW, Wood IS, Ellis A, Shirazi-Beechey SP . Molecular changes in the expression of human colonic nutrient transporters during the transition from normality to malignancy. Br J Cancer 2002; 86: 1262–1269.
Chung FY, Huang MY, Yeh CS, Chang HJ, Cheng TL, Yen LC et al. GLUT1 gene is a potential hypoxic marker in colorectal cancer patients. BMC Cancer 2009; 9: 241.
Oronsky BT, Oronsky N, Fanger GR, Parker CW, Caroen SZ, Lybeck M et al. Follow the ATP: tumor energy production: a perspective. Anticancer Agents Med Chem 2014; 14: 1187–1198.
Zhen T, Wu CF, Liu P, Wu HY, Zhou GB, Lu Y et al. Targeting of AML1-ETO in t(8;21) leukemia by oridonin generates a tumor suppressor-like protein. Sci Transl Med 2012; 4: 127ra138.
Ikezoe T, Yang Y, Bandobashi K, Saito T, Takemoto S, Machida H et al. Oridonin, a diterpenoid purified from Rabdosia rubescens, inhibits the proliferation of cells from lymphoid malignancies in association with blockade of the NF-kappa B signal pathways. Mol Cancer Ther 2005; 4: 578–586.
Kwan HY, Yang Z, Fong WF, Hu YM, Yu ZL, Hsiao WL . The anticancer effect of oridonin is mediated by fatty acid synthase suppression in human colorectal cancer cells. J Gastroenterol 2013; 48: 182–192.
Gao FH, Hu XH, Li W, Liu H, Zhang YJ, Guo ZY et al. Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc. BMC Cancer 2010; 10: 610.
Yang J, Jiang H, Wang C, Yang B, Zhao L, Hu D et al. Oridonin triggers apoptosis in colorectal carcinoma cells and suppression of microRNA-32 expression augments oridonin-mediated apoptotic effects. Biomed Pharmacother 2015; 72: 125–134.
Jin H, Tan X, Liu X, Ding Y . Downregulation of AP-1 gene expression is an initial event in the oridonin-mediated inhibition of colorectal cancer: studies in vitro and in vivo. J Gastroenterol Hepatol 2011; 26: 706–715.
Ji Z, Tang Q, Zhang J, Yang Y, Liu Y, Pan Y . Oridonin-induced apoptosis in SW620 human colorectal adenocarcinoma cells. Oncol Lett 2011; 2: 1303–1307.
Chen J . The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med 2016; 6: a026104.
Xu J, Wang Y, Tan X, Jing H . MicroRNAs in autophagy and their emerging roles in crosstalk with apoptosis. Autophagy 2012; 8: 873–882.
Smyth LA, Boardman DA, Tung SL, Lechler R, Lombardi G . MicroRNAs affect dendritic cell function and phenotype. Immunology 2015; 144: 197–205.
Chen B, Li H, Zeng X, Yang P, Liu X, Zhao X et al. Roles of microRNA on cancer cell metabolism. J Trans Med 2012; 10: 228.
Eichner LJ, Perry MC, Dufour CR, Bertos N, Park M, St-Pierre J et al. miR-378(*) mediates metabolic shift in breast cancer cells via the PGC-1beta/ERRgamma transcriptional pathway. Cell Metab 2010; 12: 352–361.
Dang CV . Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res 2010; 70: 859–862.
Vander Heiden MG . Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 2011; 10: 671–684.
Halestrap AP, Price NT . The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 1999; 343 (Pt 2): 281–299.
Pullen TJ, Sylow L, Sun G, Halestrap AP, Richter EA, Rutter GA . Overexpression of monocarboxylate transporter-1 (SLC16A1) in mouse pancreatic beta-cells leads to relative hyperinsulinism during exercise. Diabetes 2012; 61: 1719–1725.
Sakashita M, Aoyama N, Minami R, Maekawa S, Kuroda K, Shirasaka D et al. Glut1 expression in T1 and T2 stage colorectal carcinomas: its relationship to clinicopathological features. Eur J Cancer 2001; 37: 204–209.
Liu W, Fang Y, Wang XT, Liu J, Dan X, Sun LL . Overcoming 5-Fu resistance of colon cells through inhibition of Glut1 by the specific inhibitor WZB117. Asian Pac J Cancer Prev 2014; 15: 7037–7041.
Shang R, Wang J, Sun W, Dai B, Ruan B, Zhang Z et al. RRAD inhibits aerobic glycolysis, invasion, and migration and is associated with poor prognosis in hepatocellular carcinoma. Tumour Biol 2015; 37: 5097–5105.
Verstraete M, Debucquoy A, Devos E, Sagaert X, Penninckx F, Begg A et al. Investigation of possible endogenous hypoxia markers in colorectal cancer. Int J Radiat Biol 2013; 89: 9–15.
Amorim R, Pinheiro C, Miranda-Goncalves V, Pereira H, Moyer MP, Preto A et al. Monocarboxylate transport inhibition potentiates the cytotoxic effect of 5-fluorouracil in colorectal cancer cells. Cancer Lett 2015; 365: 68–78.
Cuff MA, Lambert DW, Shirazi-Beechey SP . Substrate-induced regulation of the human colonic monocarboxylate transporter, MCT1. J Physiol 2002; 539 (Pt 2): 361–371.
Wu N, Zheng B, Shaywitz A, Dagon Y, Tower C, Bellinger G et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol Cell 2013; 49: 1167–1175.
Granja S, Morais-Santos F, Miranda-Goncalves V, Viana-Ferreira M, Nogueira R, Nogueira-Silva C et al. The monocarboxylate transporter inhibitor alpha-cyano-4-hydroxycinnamic acid disrupts rat lung branching. Cell Physiol Biochem 2013; 32: 1845–1856.
Wang Y, Martins I, Ma Y, Kepp O, Galluzzi L, Kroemer G et al. Release from dying cells via lysosomal exocytosis. Autophagy 2013; 9: 1624–1625.
Kim KH, Lee MS . Autophagy—a key player in cellular and body metabolism. Nat Rev Endocrinol 2014; 10: 322–337.
Buller CL, Heilig CW, Brosius FC 3rd . GLUT1 enhances mTOR activity independently of TSC2 and AMPK. Am J Physiol Renal Physiol 2011; 301: F588–F596.
Liu X, Niu Y, Yuan H, Huang J, Fu L . AMPK binds to sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy. Metabolism 2015; 64: 658–665.
Takimoto M, Takeyama M, Hamada T . Possible involvement of AMPK in acute exercise-induced expression of monocarboxylate transporters MCT1 and MCT4 mRNA in fast-twitch skeletal muscle. Metabolism 2013; 62: 1633–1640.
Liu X, Chhipa RR, Nakano I, Dasgupta B . The AMPK inhibitor compound C is a potent AMPK-independent antiglioma agent. Mol Cancer Ther 2014; 13: 596–605.
Fulda S, Kogel D . Cell death by autophagy: emerging molecular mechanisms and implications for cancer therapy. Oncogene 2015; 34: 5105–5113.
Kim JH, Kim HY, Lee YK, Yoon YS, Xu WG, Yoon JK et al. Involvement of mitophagy in oncogenic K-Ras-induced transformation: overcoming a cellular energy deficit from glucose deficiency. Autophagy 2011; 7: 1187–1198.