Ordered Mesoporous Intermetallic Trimetals for Efficient and pH‐Universal Hydrogen Evolution Electrocatalysis

Advanced Energy Materials - Tập 12 Số 30 - 2022
Yanzhi Wang1, Hao Lv1, Lizhi Sun1, Fengrui Jia1, Ben Liu1
1Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China

Tóm tắt

AbstractOrdered intermetallic platinum‐zinc (I‐PtZn) bimetals represent an emerging class of alloy electrocatalysts for water splitting and fuel cell electrocatalysis, but large‐scale commercial implementation has still been hindered by their catalytic activity and stability. Here, ordered mesoporous I‐PtZn bimetals are selectively substituted with 3d transition/main metals, termed MI‐PtZnM trimetals, where M is scandium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, or gallium. It is demonstrated that ordered MI‐PtZnCo trimetals exhibit the best electrocatalytic performance for the hydrogen evolution reaction (HER) in an alkaline media, with a high mass activity of 1.77 A mgpt–1 and specific activity of 3.07 mA cmpt–2. More impressively, this electrocatalyst shows robust electrocatalytic stability with negligible activity decay even after 50 000 cycles. The MI‐PtZnCo trimetals are also highly active and stable for HER electrocatalysis over a wide pH range (neutral and acidic media). Mechanistic studies suggest that Co‐enabled Pt atoms in MI‐PtZn with a more electron‐rich surface, in addition to stable mesoporous and intermetallic structure, synergistically accelerate Tafel kinetics and thus enhance HER activity and stability of MI‐PtZnCo trimetal electrocatalysts.

Từ khóa


Tài liệu tham khảo

10.1002/aenm.201903120

10.1021/acs.accounts.8b00002

10.1039/D0CS00013B

10.1002/aenm.202100265

10.1002/sus2.32

10.1021/acs.chemrev.9b00248

10.1002/adfm.202002536

10.1002/adma.202108432

10.1007/s41918-020-00087-y

10.1038/s41560-020-00710-8

10.1038/s41929-021-00663-5

10.1021/acsenergylett.1c00246

10.1021/jacs.8b13366

10.1021/acs.jpclett.8b03861

10.1002/adma.201605997

10.1002/anie.201701314

10.1002/adma.201801563

10.1021/acs.accounts.9b00172

10.1021/acs.accounts.7b00476

10.1002/aenm.202200293

10.1002/aenm.202101937

10.1038/nmat3458

10.1021/jacs.6b12780

10.1021/jacs.9b13313

10.1021/acs.nanolett.0c02812

10.1002/anie.201916260

10.1002/anie.202116179

10.1002/anie.202100307

10.1021/acscatal.5b02464

10.1038/s41467-019-11794-6

10.1007/s12274-019-2473-x

10.1021/nn301583g

10.1021/cm900048e

10.1002/anie.202113278

10.1002/aenm.201602073

10.1002/adma.201903683

10.1002/aenm.201803771

10.1021/jacs.0c08962

10.1002/anie.201908824

10.1126/science.aaa8765

10.1002/adma.201801993

10.1002/adma.202002435

10.1039/D0CS01041C

10.1002/adma.201601909

10.1039/C8CS00113H

10.1021/acs.chemrev.5b00255

10.1002/adma.201502593

10.1021/acsnano.0c02731

10.1021/acsnano.1c10112

10.1021/acscentsci.0c01262

10.1021/acscatal.1c01808

10.1002/aenm.202000179

10.1021/acscatal.6b02603

10.1002/adfm.202002281

10.1016/j.chempr.2020.10.008

10.1038/s41467-018-08117-6

10.1002/adma.201600005

10.1002/aenm.201602122

10.1002/anie.201600525

10.1002/anie.202111920

10.1002/anie.202113135

10.1021/jacs.0c07143

10.1002/adfm.202008298

10.1038/s41467-019-12965-1

10.1021/nl502686u