Optimum Carrier Concentration in n‐Type PbTe Thermoelectrics

Advanced Energy Materials - Tập 4 Số 13 - 2014
Yanzhong Pei1, Zachary M. Gibbs2, A. Gloskovskii3, Benjamin Balke4, Wolfgang G. Zeier4, G. Jeffrey Snyder2
1Materials Science and Engineering Tongji University Shanghai 201804 China
2Materials Science, California Institute of Technology, Pasadena, CA 91125, USA
3A. Gloskovskii Deutsches Elektronen‐Synchrotron DESY 22607 Hamburg Germany
4Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg‐Universität Duesbergweg 10–14 55099 Mainz Germany

Tóm tắt

Taking La‐ and I‐doped PbTe as an example, the current work shows the effects of optimizing the thermoelectric figure of merit, zT, by controlling the doping level. The high doping effectiveness allows the carrier concentration to be precisely designed and prepared to control the Fermi level. In addition to the Fermi energy tuning, La‐doping modifies the conduction band, leading to an increase in the density of states effective mass that is confirmed by transport, infrared reflectance and hard X‐ray photoelectron spectroscopy measurements. Taking such a band structure modification effect into account, the electrical transport properties can then be well‐described by a self‐consistent single non‐parabolic Kane band model that yields an approximate (m*T)1.5 dependence of the optimal carrier concentration for a peak power factor in both doping cases. Such a simple temperature dependence also provides an effective approximation of carrier concentration for a peak zT and helps to explain, the effects of other strategies such as lowering the lattice thermal conductivity by nanostructuring or alloying in n‐PbTe, which demonstrates a practical guide for fully optimizing thermoelectric materials in the entire temperature range. The principles used here should be equally applicable to other thermoelectric materials.

Từ khóa


Tài liệu tham khảo

Abelson R. D., 2006, Thermoelectrics Handbook: Macro to Nano, 1

10.1126/science.1158899

Ioffe A. F., 1957, Semiconductor Thermoelements, and Thermoelectric Cooling

10.1038/nmat2090

10.1007/978-1-4899-5723-8

10.1007/978-1-4684-8607-0

Fritts R. W., 1960, Thermoelectric Materials and Devices, 143

Heikes R. R., 1961, Thermoelectricity: Science and Engineering, 405

10.1039/c0ee00456a

10.1039/c1ee01314a

10.1073/pnas.1111419109

10.1016/S1369-7021(11)70278-4

10.1021/cm902195j

10.1038/nchem.955

10.1002/anie.200600865

10.1126/science.1159725

10.1038/nature11439

10.1103/PhysRevB.86.045213

10.1038/nmat3035

10.1021/ja301245b

10.1002/adma.201202919

10.1002/aenm.201100770

10.1038/am.2012.52

10.1038/nature09996

10.1002/adma.201103153

10.1103/PhysRevLett.108.166601

10.1002/adma.201004200

a)M. I.Fedorov ECT2007 5th European Conference on Thermoelectrics 2006 Invited Lectures #07 1;

10.1103/PhysRevB.74.045207

10.1039/c1jm13888j

10.1039/c2ee21536e

10.1007/978-3-642-00716-3

10.1063/1.3182800

Vining C. B., 1995, CRC Handbook of Thermoelectrics, 329

10.1021/cm901956r

Kuznetsov V. L., 2006, Thermoelectrics Handbook: Macro to Nano, 1

10.1016/j.physb.2006.10.001

10.1002/aenm.201000072

10.1021/cm901668h

10.1021/cm803437x

10.1134/1.1187491

10.1002/adfm.201000878

Bhandari C. M., 1995, CRC Handbook of Thermoelectrics, 27

10.1103/PhysRev.80.72

10.1103/PhysRev.101.944

10.1016/0022-3697(57)90013-6

10.1002/pssb.2220430102

10.1103/PhysRev.174.867

Mahan G. D., 1998, Solid State Physics, 81

10.1002/adma.201202919

10.1063/1.3534080

10.1515/znb-1974-9-1012

10.1021/ja7110652

10.1021/cm902001c

10.1021/cm803519p

10.1021/ja910762q

10.1016/j.elspec.2011.11.005

Ravich Y. I., 2003, Lead Chalcogenides: Physics and Applications, 1

10.1007/BFb0044920

Zhitinskaya M. K., 1966, Sov. Phys. Solid State, 8, 246

Chernik I. A., 1968, Sov. Phys. Semicond., 2, 645

Airapetyants S. V., 1966, Sov. Phys. Solid State, 8, 1069

Vinogradova M. N., 1969, Sov. Phys. Semicond., 2, 892

Smirnov I. A., 1967, Sov. Phys. Semicond., 1, 739

10.1002/pssb.2220430202

10.1051/jphyscol:1968410

10.1103/PhysRevB.16.680

10.1103/PhysRev.135.A514

10.1063/1.1708150

10.1088/0370-1301/65/5/309

10.1063/1.4748363

10.1103/PhysRev.140.A330

10.1103/PhysRev.134.A1106

Smirnov I. A., 1961, Sov. Phys. Solid State, 2, 1793

Stavitskaya T. S., 1968, Sov. Phys. Semicond., 1, 952

10.1088/0022-3727/4/7/320

10.1007/BF00886018

10.1063/1.2181197

10.1021/ja071875h

10.1126/science.1092963

Ure R. W., 1961, Thermoelectricity: Science and Engineering, 339