Optimizing semantic LSTM for spam detection
Tóm tắt
Tài liệu tham khảo
MAAWG. Messaging anti-abuse working group. Email metrics report. Q1 2012 to Q2 2014. https://www.m3aawg.org/sites/default/files/document/M3AAWG_2012-2014Q2_Spam_Metrics_Report16.pdf. Accessed 30 Mar 2017
Mittal N, Agarwal B, Agarwal S, Agarwal S, Gupta P (2013) A hybrid approach for twitter sentiment analysis. In: 10th international conference on natural language processing (ICON-2013), pp 116–120
Wang AH (2010) Don’t follow me: spam detection in twitter. In: Proceedings of the 2010 international conference on security and cryptography (SECRYPT). IEEE, New York, pp 1–10
Tretyakov K (2004) Machine learning techniques in spam filtering. In: Data mining problem-oriented seminar. MTAT, vol 3, no 177, pp 60–79
SMS Spam Collection v.1. http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/. Accessed 27 Dec 2016
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
Hong J, Fang M (2015) Sentiment analysis with deeply learned distributed representations of variable length texts. Technical report, Stanford University, pp 655–665
Miller GA (1995) WordNet: a lexical database for English. Commun ACM 38(11):39–41