Optimized advance front method of packing dense ellipse for generating the convex polygon structure statistically equivalent with real material

Springer Science and Business Media LLC - Tập 8 - Trang 791-812 - 2020
Libing Du1,2, Xinrong Liu1,2, Yafeng Han1,2, Zhiyun Deng1,2, Yiliang Tu
1School of Civil Engineering, Chongqing University, Chongqing, China
2National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas (Chongqing), Chongqing, China

Tóm tắt

A new constructive method, called optimized advance front method (OAFM), for ellipse packing is proposed. The OAFM allows particle rotation at several angles and movement along a local advance front. Combined with the ellipse approximated by four connected arcs and a series of sequential coordinate transformations, the OAFM generates dense ellipse packing with any imposed size, aspect ratio, and orientation distribution at a fastpacking speed, and the generated ellipse packing can satisfy an imposed spatial arrangement. Based on the approximation of ellipses by multicircles, Laguerre Voronoi Tessellation method constructs initial cells. The initial cells are then merged to create the convex polygon with the same size, aspect ratio, orientation, and location as that of the obtained ellipse. Three examples of ellipse packing and convex polygon demonstrate that the convex polygon generated can be statistically equivalent with the real material and satisfy an imposed spatial arrangement.

Tài liệu tham khảo

Bagi K (2005) An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul Matter 7(1):31–43. https://doi.org/10.1007/s10035-004-0187-5 Bargmann S, Klusemann B, Markmann J, Schnabel JE, Schneider K, Soyarslan C, Wilmers J (2018) Generation of 3D representative volume elements for heterogeneous materials: a review. Prog Mater Sci 96:322–384. https://doi.org/10.1016/j.pmatsci.2018.02.003 Benabbou A, Borouchaki H, Laug P, Lu J (2008) Sphere packing and applications to granular structure modeling. In: Proceedings of the 17th international meshing roundtable. Springer, pp 1–18 (Reprinted) Benabbou A, Borouchaki H, Laug P, Lu J (2010) Numerical modeling of nanostructured materials. Finite Elem Anal Des 46(1–2):165–180. https://doi.org/10.1016/j.finel.2009.06.030 Bernacki M, Logé RE, Coupez T (2011) Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials. Scr Mater 64(6):525–528. https://doi.org/10.1016/j.scriptamat.2010.11.032 Berntsen KN (2001) Modelling granular media and molecular dynamics simulations of ellipses Birgin EG, Lobato RD (2019) A matheuristic approach with nonlinear subproblems for large-scale packing of ellipsoids. Eur J Oper Res 272(2):447–464. https://doi.org/10.1016/j.ejor.2018.07.006 Birgin EG, Lobato RD, Martínez JM (2016) Packing ellipsoids by nonlinear optimization. J Global Optim 65(4):709–743. https://doi.org/10.1007/s10898-015-0395-z Delaney G, Weaire D, Hutzler S, Murphy S (2005) Random packing of elliptical disks. Philos Mag Lett 85(2):89–96. https://doi.org/10.1080/09500830500080763 Donev A (2004) Improving the density of jammed disordered packings using ellipsoids. Science 303(5660):990–993. https://doi.org/10.1126/science.1093010 Donev A, Connelly R, Stillinger FH, Torquato S (2007) Underconstrained jammed packings of nonspherical hard particles: ellipses and ellipsoids. Phys Rev E 75(5):51304. https://doi.org/10.1103/physreve.75.051304 Falco S, Siegkas P, Barbieri E, Petrinic N (2014) A new method for the generation of arbitrarily shaped 3D random polycrystalline domains. Comput Mech 54(6):1447–1460. https://doi.org/10.1007/s00466-014-1068-3 Feng YT, Han K, Owen DRJ (2002) An advancing front packing of polygons, ellipses and spheres. Int J Numer Methods Eng Feng YT, Han K, Owen D (2003) Filling domains with disks: an advancing front approach. Int J Numer Methods Eng 56(5):699–713 Gao F, Stead D, Elmo D (2016) Numerical simulation of microstructure of brittle rock using a grain-breakable distinct element grain-based model. Comput Geotech 78:203–217. https://doi.org/10.1016/j.compgeo.2016.05.019 Ghazvinian E, Diederichs MS, Quey R (2014) 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing. J Rock Mech Geotech Eng 6(6):506–521. https://doi.org/10.1016/j.jrmge.2014.09.001 Gross D, Li M (2002) Constructing microstructures of poly- and nanocrystalline materials for numerical modeling and simulation. Appl Phys Lett 80(5):746–748. https://doi.org/10.1063/1.1432448 Hidalgo RC, Kadau D, Kanzaki T, Herrmann HJ (2012) Granular packings of cohesive elongated particles. Granul Matter 14(2):191–196. https://doi.org/10.1007/s10035-011-0303-2 Hitti K, Bernacki M (2013) Optimized dropping and rolling (ODR) method for packing of poly-disperse spheres. Appl Math Model 37(8):5715–5722. https://doi.org/10.1016/j.apm.2012.11.018 Hitti K, Laure P, Coupez T, Silva L, Bernacki M (2012) Precise generation of complex statistical representative volume elements (RVEs) in a finite element context. Comput Mater Sci 61:224–238. https://doi.org/10.1016/j.commatsci.2012.04.011 Ilin DN, Bernacki M (2016) Advancing layer algorithm of dense ellipse packing for generating statistically equivalent polygonal structures. Granul Matter. https://doi.org/10.1007/s10035-016-0646-9 Kerimov A, Mavko G, Mukerji T, Dvorkin J, Al Ibrahim MA (2018) The influence of convex particles’ irregular shape and varying size on porosity, permeability, and elastic bulk modulus of granular porous media: insights from numerical simulations. J Geophys Res Solid Earth 123(12):510–563. https://doi.org/10.1029/2018jb016031 Markauskas D, Kačianauskas R, Džiugys A, Navakas R (2010) Investigation of adequacy of multi-sphere approximation of elliptical particles for DEM simulations. Granul Matter 12(1):107–123. https://doi.org/10.1007/s10035-009-0158-y Mollon G, Zhao J (2012) Fourier–Voronoi-based generation of realistic samples for discrete modelling of granular materials. Granul Matter 14(5):621–638. https://doi.org/10.1007/s10035-012-0356-x Morales IP, de Farias MM, Valera RR, Morfa CR, Martínez Carvajal HE (2016) Contributions to the generalization of advancing front particle packing algorithms. Int J Numer Methods Eng 107(12):993–1008. https://doi.org/10.1002/nme.5192 Morfa CAR, Pérez Morales IP, de Farias MM, de Navarra EOI, Valera RR, Casañas HD (2016) General advancing front packing algorithm for the discrete element method. Comput Part Mech. https://doi.org/10.1007/s40571-016-0144-1 O’Sullivan C (2011) Particulate discrete element modelling: a geomechanics perspective. CRC Press, Boca Raton Pérez Morales I, Roselló Valera R, Recarey Morfa C, Muniz De Farias M (2017) Dense packing of general-shaped particles using a minimization technique. Comput Part Mech 4(2):165–179. https://doi.org/10.1007/s40571-016-0103-x Potyondy D (2010) PFC2D grain-structure generator technical memorandum. Itasca Consulting Group Inc, Minneapolis (Reprinted) Recarey C, Pérez I, Roselló R, Muniz M, Hernández E, Giraldo R, Oñate E (2019) Advances in particle packing algorithms for generating the medium in the discrete element method. Comput Methods Appl Mech Eng 345:336–362. https://doi.org/10.1016/j.cma.2018.11.011 Stavrou A, Vazaios I, Murphy W, Vlachopoulos N (2019) Refined approaches for estimating the strength of rock blocks. Geotech Geol Eng 37(6):5409–5439. https://doi.org/10.1007/s10706-019-00989-9 Strang G (1993) The fundamental theorem of linear algebra. Am Math Mon 100(9):848–855. https://doi.org/10.1080/00029890.1993.11990500 van der Wielen KP, Rollinson G (2016) Texture-based analysis of liberation behaviour using Voronoi tessellations. Miner Eng 89:93–107. https://doi.org/10.1016/j.mineng.2015.09.008 Wang C, Liang V (1997) A packing generation scheme for the granular assemblies with planar elliptical particles. Int J Numer Anal Met 21(5):347–358. https://doi.org/10.1002/(SICI)1096-9853(199705)21:5%3c347:AID-NAG874%3e3.0.CO;2-L Wejrzanowski T, Skibinski J, Szumbarski J, Kurzydlowski KJ (2013) Structure of foams modeled by Laguerre–Voronoi tessellations. Comput Mater Sci 67:216–221. https://doi.org/10.1016/j.commatsci.2012.08.046 Wellmann C, Lillie C, Wriggers P (2008) Homogenization of granular material modeled by a three-dimensional discrete element method. Comput Geotech 35(3):394–405. https://doi.org/10.1016/j.compgeo.2007.06.010 Wellmann C, Wriggers P (2011) Homogenization of granular material modeled by a 3D DEM, vol 25. Springer, Dordrecht, pp 211–231. https://doi.org/10.1007/978-94-007-0735-1_8(Reprinted) Wellmann C, Wriggers P (2012) A two-scale model of granular materials. Comput Methods Appl Mech Eng 205–208:46–58. https://doi.org/10.1016/j.cma.2010.12.023 Xu T, Li M (2009) Topological and statistical properties of a constrained Voronoi tessellation. Philos Mag 89(4):349–374. https://doi.org/10.1080/14786430802647065 Xu WX, Chen HS, Lv Z (2011) An overlapping detection algorithm for random sequential packing of elliptical particles. Physica A 390(13):2452–2467. https://doi.org/10.1016/j.physa.2011.02.048 Zhang P, Karimpour M, Balint D, Lin J, Farrugia D (2012) A controlled Poisson Voronoi tessellation for grain and cohesive boundary generation applied to crystal plasticity analysis. Comput Mater Sci 64:84–89. https://doi.org/10.1016/j.commatsci.2012.02.022 Zhang Y, Wong LNY (2018) A review of numerical techniques approaching microstructures of crystalline rocks. Comput Geosci-UK 115:167–187. https://doi.org/10.1016/j.cageo.2018.03.012 Zhou J, Zhang L, Yang D, Braun A, Han Z (2017) Investigation of the quasi-brittle failure of alashan granite viewed from laboratory experiments and grain-based discrete element modeling. Materials 10(7):835. https://doi.org/10.3390/ma10070835 Zsaki AM (2009) An efficient method for packing polygonal domains with disks for 2D discrete element simulation. Comput Geotech 36(4):568–576. https://doi.org/10.1016/j.compgeo.2008.10.005