Optimization of the conditions of synchrotron Mössbauer experiment for studying electronic transitions at high pressures by the example of (Mg, Fe)O magnesiowustite

Pleiades Publishing Ltd - Tập 84 - Trang 161-166 - 2006
A. G. Gavriliuk1,2,3, J. F. Lin4, I. S. Lyubutin1, V. V. Struzhkin2
1Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia
2Geophysical Laboratory, Carnegie Institution of Washington, Washington DC, USA
3Institute for High Pressure Physics Russian Academy of Sciences, Troitsk, Moscow Region, Russia
4Lawrence Livermore National Laboratory, Livermore, USA

Tóm tắt

The effect of the experimental conditions on the shape of the nuclear resonant forward scattering (NFS) from (Mg0.75Fe0.25)O magnesiowustite has been studied at high pressures up to 100 GPa in diamond anvil cells by the method of the NFS of synchrotron radiation from the Fe-57 nuclei at room temperature. The behavior of the system in the electronic transition of the Fe2+ ion from the high-spin to low-spin state (spin crossover) near 62 GPa is analyzed as a function of the sample thickness, degree of nonhydrostaticity, and focusing and collimation conditions of a synchrotron beam. It is found that the inclusion of dynamical beats associated with the sample thickness is very important in the approximation of the experimental NFS spectra. It is shown that the electronic transition occurs in a much narrower pressure range (±6 GPa) rather than in a broad range as erroneously follows from experiments with thick samples under strongly nonhydrostatic conditions.

Tài liệu tham khảo

G. V. Smirnov, Hyperfine Interact. 123/124, 31 (1999). I. A. Trojan, A. G. Gavrilyuk, I. S. Lyubutin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 74, 26 (2001) [JETP Lett. 74, 24 (2001)]. I. S. Lyubutin, V. A. Sarkisyan, A. G. Gavrilyuk, et al., Izv. Ross. Akad. Nauk, Ser. Fiz. 67, 1018 (2003). A. G. Gavriliuk, I. A. Trojan, I. S. Lyubutin, et al., Zh. Éksp. Teor. Fiz. 127, 780 (2005) [JETP 100, 688 (2005)]. A. G. Gavriliuk, V. v. Struzhkin, I. S. Lyubutin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 82, 243 (2005) [JETP Lett. 82, 224 (2005)]. D. M. Sherman, J. Geophys. Res. 96, 14 299 (1991). J. F. Lin, A. G. Gavriliuk, V. V. Struzhkin, et al., Phys. Rev. B 73, 113107 (2006). W. Sturhahn, J. Phys.: Condens. Matter 16, S497 (2004). Yu. V. Shvyd’ko, Phys. Rev. B 59, 9132 (1999). G. Shirane, D. E. Cox, and S. L. Ruby, Phys. Rev. 125, 1158 (1962). H. Spiering, E. Meissner, H. Koppen, et al., Chem. Phys. 68, 65 (1982). P. Gütlich, in Chemical Mossbauer Spectroscopy, Ed. by R. H. Herber (Chapman and Hall, London, 1978), p. 27. H. Koppen, E. W. Muller, C. P. Kohler, et al., Chem. Phys. Lett. 91, 348 (1982). J. F. Lin, V. V. Struzhkin, S. D. Jacobsen, et al., Nature 436, 377 (2005). I. Yu. Kantor, L. S. Dubrovinsky, and C. A. McCammon, Phys. Rev. B 73, 100101 (2006). V. A. Sarkisyan, I. A. Trojan, I. S. Lyubutin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 76, 788 (2002) [JETP Lett. 76, 664 (2002)]. A. G. Gavriliuk, I. A. Trojan, I. S. Lyubutin, et al., Zh. Éksp. Teor. Fiz. 127, 780 (2005) [JETP 100, 688 (2005)]. A. G. Gavriliuk, V. V. Struzhkin, I. S. Lyubutin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 82, 243 (2005) [JETP Lett. 82, 224 (2005)]. G. R. Hearne, M. P. Pasternak, R. D. Taylor, and P. Lacorre, Phys. Rev. B 51, 11 495 (1995). W. M. Xu, O. Naaman, G. Kh. Rozenberg, et al., Phys. Rev. B 64, 094411 (2001). M. P. Pasternak, G. Kh. Rozenberg, G. Yu. Machavariani, et al., Phys. Rev. Lett. 82, 4663 (1999). I. S. Lyubutin, A. G. Gavriliuk, I. A. Trojan, and R. A. Sadykov, Pis’ma Zh. Éksp. Teor. Fiz. 82, 797 (2005) [JETP Lett. 82, 702 (2005)].