Tối ưu hóa một số điều kiện của phản ứng plastein xúc tác bởi Neutrase nhằm trung gian hoạt tính ức chế ACE in vitro của thủy phân casein được chuẩn bị bởi Neutrase

Springer Science and Business Media LLC - Tập 51 - Trang 276-284 - 2011
Wei Xu1, Bao-Hua Kong2, Xin-Huai Zhao1,2
1Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, People’s Republic of China
2Department of Food Science, Northeast Agricultural University, Harbin, People’s Republic of China

Tóm tắt

Thủy phân casein đã được thực hiện bằng cách thủy phân casein với Neutrase và sau đó được sửa đổi bằng phản ứng plastein xúc tác bởi Neutrase. Thủy phân đã chuẩn bị có tỷ lệ thủy phân là 13,0% và thể hiện hoạt tính ức chế ACE in vitro với giá trị IC50 là 40,4 μg⋅mL−1. Với lượng nhóm amin tự do giảm của thủy phân đã sửa đổi như là phản ứng, một số điều kiện của phản ứng plastein bao gồm nồng độ chất nền, tỷ lệ enzyme trên chất nền, nhiệt độ phản ứng và thời gian đã được nghiên cứu bằng các thí nghiệm đơn yếu tố và phương pháp bề mặt phản hồi, và cuối cùng được tối ưu hóa lần lượt là 62% (w/w), 3,0 kU⋅g−1 peptide, 30 °C và 6,3 h. Số lượng nhóm amin tự do giảm tối đa của thủy phân đã sửa đổi chuẩn bị dưới các điều kiện tối ưu hóa này là 210,0 μmol⋅g−1 peptide, trong khi giá trị IC50 tương ứng đã giảm xuống còn 14,7 μg⋅mL−1. Kết quả hiện tại cho thấy rằng phản ứng plastein xúc tác bởi Neutrase có khả năng tăng cường hoạt tính ức chế ACE in vitro của thủy phân casein, và cũng nhấn mạnh tầm quan trọng của một nghiên cứu trong tương lai nhằm điều tra thành phần peptide của thủy phân đã sửa đổi và vai trò của protease đã sử dụng trong phản ứng plastein.

Từ khóa


Tài liệu tham khảo

Adler-Nissen J (1979) Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J Agric Food Chem 27:1256–1261 Andrews AT, Alichanidis E (1990) The plastein reaction revisited: evidence for a purely aggregation reaction mechanism. Food Chem 35:243–261 Ariyoshi Y (1993) Angiotensin-converting enzyme inhibitors derived from food proteins. Trends Food Sci Tech 4:139–144 Ashley DVM, Temler R, Barclay D, Dormond CA, Jost R (1983) Amino acid-enriched plasteins: a source of limiting amino acids for the weanling rat. J Nutr 113:21–27 Cheung HS, Wang FL, Ondetti MA, Sabo E, Cushman DW (1980) Binding of peptide substrates and inhibitors of angiotensin converting enzyme. J Biol Chem 255:401–407 Church FC, Swaisgood HE, Porter DH, Catignani GL (1983) Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J Dairy Sci 66:1219–1227 Combes D, Lozano P (1992) α-Chymotrypsin in plastein synthesis. Influence of water activity. Ann NY Acad Sci 672:409–414 (Enzyme Engineering XI) Contreras MM, Carrón R, Montero MJ, Ramos M, Recio I (2009) Novel casein-derived peptides with antihypertensive activity. Int Dairy J 19:566–573 da Costa EL, Gontijo JAD, Netto FM (2007) Effect of heat and enzymatic treatment on the antihypertensive activity of whey protein hydrolysates. Int Dairy J 17:632–640 Dey SS, Dora KC (2011) Optimization of the production of shrimp waste protein hydrolysate using microbial proteases adopting response surface methodology. J Food Sci Technol, available online (DOI: 10.1007/s13197-011-0455-4) FitzGerald RJ, Murray BA, Walsh DJ (2004) Hypotensive peptides from milk proteins. J Nutr 134:980S–988S Fujimaki M, Kato M, Aria S, Yamashita M (1971) Application of microbial proteinase to soybean and other materials to improve acceptability. J Appl Bacteriol 34:119–131 Guo Y, Pan D, Tanokura M (2009) Optimisation of hydrolysis conditions for the production of the angiotensin-I-converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology. Food Chem 114:328–333 IDF (1993) Determination of the nitrogen (Kjeldahl method) and calculation of the crude protein content. In: IDF Standard 20B. International Dairy Federation, Brussels, Belgium Janitha PK, Wanasundara PD, Ross ARS, Amarowicz R, Ambrose SJ, Pegg RB, Shand PJ (2002) Peptides with angiotensin I-converting enzyme (ACE) inhibitory activity from defibrinated, hydrolyzed bovine plasma. J Agric Food Chem 50:6981–6988 Jiang J, Chen S, Ren F, Luo Z, Zeng SS (2007) Yak milk casein as a functional ingredient: preparation and identification of angiotensin-I-converting enzyme inhibitory peptides. J Dairy Res 74:18–25 Kunst T (2003) Protein modification to optimize functionality: protein hydrolysates. In: Whitaker JR, Voragen AFJ, Wong DWS (eds) Handbook of food enzymology. Marcel Dekker, Now York, pp 221–236 López-Fandiño R, Otte J, van Camp J (2006) Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. Int Dairy J 16:1277–1293 Lozano P, Combes D (1991) α-Chymotrypsin in plastein synthesis: influence of substrate concentration on enzyme activity. Biotechnol Appl Biochem 14:212–221 Mao XY, Ni JR, Sun WL, Hao PP, Fan L (2007) Value-added utilization of yak milk casein for the production of angiotensin-I-converting enzyme inhibitory peptides. Food Chem 103:1282–1287 Marambe PWMLHK, Shand PJ, Wanasundara JPD (2008) An in-vitro investigation of selected biological activities of hydrolysed flaxseed (Linum usitatissimum L.) proteins. J Am Oil Chem Soc 85:1155–1164 Meisel H (1997) Biochemical properties of bioactive peptides derived from milk proteins: potential nutraceuticals for food and pharmaceutical applications. Livest Prod Sci 50:125–138 Miguel M, Contreras MM, Recio I, Aleixandre A (2009) ACE—inhibitory and antihypertensive properties of a bovine casein hydrolysate. Food Chem 112:211–214 Murray BA, Walsh DJ, FitzGerald RJ (2004) Modification of the furanacryloyl-L– phenylalanyl-glycylglycine assay for determination of angiotensin-I-converting enzyme inhibitory activity. J Biochem Biophys Meth 59:127–137 Nakamura Y, Yamamoto N, Sakai K, Okubo A, Yamazaki S, Takano T (1995) Purification and characterization of angiotensin-I converting enzyme inhibitors from a sour milk. J Dairy Sci 78:777–783 Naqash SY, Nazeer RA (2011) Antioxidant and functional properties of protein hydrolysates from pink perch (Nemipterus japonicus) muscle. J Food Sci Technol, available online (DOI: 10.1007/s13197-011-0416-y) Ortiz-Chao P, Gómez-Ruiz JA, Rastall RA, Mills D, Cramer R, Pihlanto A, Korhonen H, Jauregi P (2009) Production of novel ACE inhibitory peptides from β-lactoglobulin using Protease N Amano. Int Dairy J 19:69–76 Otte J, Shalaby SM, Zakora M, Pripp AH, El-Shabrawy SA (2007) Angiotensin- converting enzyme inhibitory activity of milk protein hydrolysates: effect of substrate, enzyme and time of hydrolysis. Int Dairy J 17:488–503 Pallavicini C, Finley JW, Stanley WL, Watters GG (1980) Plastein synthesis with α-chymotrypsin immobilised on chitin. J Sci Food Agric 31:273–278 Pihlanto A, Virtanen T, Korhonen H (2010) Angiotensin I converting enzyme (ACE) inhibitory activity and antihypertensive effect of fermented milk. Int Dairy J 20:3–10 Rafieian F, Keramat J, Kadivar M (2011) Optimization of gelatin extraction from chicken deboner residue using RSM method. J Food Sci Technol, available online (DOI: 10.1007/s13197-011-0355-7) Robert MC, Razaname A, Mutter M, Juillerat MA (2004) Identification of angiotensin- I-converting enzyme inhibitory peptides derived from sodium caseinate hydrolysates produced by Lactobacillus helveticus NCC 2765. J Agric Food Chem 52:6923–6931 Sarath G, De La Motte RS, Wagner FW (1989) Protease assay methods. In: Beynon RJ, Bond JS (eds) Proteolytic enzymes, a practical approach. IRL Press, Oxford, pp 25–55 Shalaby SM, Zakora M, Otte J (2006) Performance of two commonly used angiotensin- converting enzyme inhibition assays using FA-PGG and HHL as substrates. J Dairy Res 73:178–186 Spellman D, McEvoy E, O’Cuinn G, FitzGerald RJ (2003) Proteinase and exopeptidase hydrolysis of whey protein: comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. Int Dairy J 13:447–453 Stevenson DE, Morgan KR, Fenton GA, Moraes G (1999) Use of NMR and mass spectrometry to detect and quantify protease-catalyzed peptide bond formation in complex mixtures. Enzyme Microb Technol 25:357–363 Suetsuna K, Nakano T (2000) Identification of an antihypertensive peptide from peptic digest of wakame (Undaria pinnatifida). J Nutr Biochem 11:450–454 Sukan G, Andrews AT (1982a) Application of the plastein reaction to caseins and to skim milk powder I. Protein hydrolysis and plastein formation. J Dairy Res 49:265–278 Sukan G, Andrews AT (1982b) Application of the plastein reaction to caseins and to skim milk powder II. Chemical and physical properties of the plasteins. J Dairy Res 49:279–293 Sun Q, Shen H, Luo Y (2011) Antioxidant activity of hydrolysates and peptide fractions derived from porcine hemoglobin. J Food Sci Tech 48:53–60 Williams RJH, Brownsell VL, Andrews AT (2001) Application of the plastein reaction to mycoprotein: I. Plastein synthesis. Food Chem 72:329–335 Yamamoto N (1997) Antihypertensive peptides derived from food proteins. Biopolymers 43:129–134 Yamashita M, Arai S, Fujimaki M (1976a) Plastein reaction for food protein improvement. J Agric Food Chem 24:1100–1104 Yamashita M, Arai S, Fujimaki M (1976b) A low-phenylalenine, high-tyrosine plastein as an acceptable dietetic food. J Food Sci 41:1029–1032 Ymashita M, Arai S, Tsai SJ, Fujimaki M (1971) Plastein reaction as a method for enhancing the sulfur-containing amino acid level of soybean protein. J Agric Food Chem 19:1151–1154 Zhao XH, Li YY (2009) An approach to improve ACE-inhibitory activity of casein hydrolysates with plastein reaction catalyzed by Alcalase. Euro Food Res Tech 229:795–805