Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity

Julián Quintero Quiroz1, Natalia María Tascón Acevedo1, Jenniffer Zapata-Giraldo2, Luz Elena Botero2, Diana Zárate-Triviño3, Jorge Saldarriaga4, Vera Z. Pérez5
1Centro de Bioingeniería, Grupo de investigaciones en Bioingeniería, Universidad Pontificia Bolivariana, circular 1 No. 73-76, Medellín, 050031, Colombia
2Grupo de Investigación de Biología de Sistemas,Universidad Pontificia Bolivariana, Cl 78B No. 72A-109, Medellín, 050031, Colombia
3Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba S/N Ciudad Universitaria San Nicolás de los Garza, Monterrey, 64450, México
4Grupo de Investigación Sobre Nuevos Materiales, Universidad Pontificia Bolivariana, Cq.1 No. 70-01, Medellín, 050031, Colombia
5Facultad de Ingeniería Eléctrica y Electrónica, Medellín, 050031, Colombia

Tóm tắt

Abstract Background Chemical reduction has become an accessible and useful alternative to obtain silver nanoparticles (AgNPs). However, its toxicity capacity depends on multiple variables that generate differences in the ability to inhibit the growth of microorganisms. Thus, optimazing parameters for the synthesis of AgNPs can increase its antimicrobial capacity by improving its physical-chemical properties. Methods In this study a Face Centered Central Composite Design (FCCCD) was carried out with four parameters: A g N O 3 concentration, sodium citrate (TSC) concentration, N a B H 4 concentration and the pH of the reaction with the objective of inhibit the growth of microorganisms. The response variables were the average size of AgNPs, the peak with the greatest intensity in the size distribution, the polydispersity of the nanoparticle size and the yield of the process. AgNPs obtained from the optimization were characterized physically and chemically. The antimicrobial activity of optimized AgNPs was evaluated against Staphylococcus aureus , Escherichia coli , Escherichia coli AmpC resistant, and Candida albicans and compared with AgNPs before optimization. In addition, the cytotoxicity of the optimized AgNPs was evaluated by the colorimetric assay MTT (3- (4,5- Dimethylthiazol- 2- yl)- 2, 5 - Diphenyltetrazolium Bromide). Results It was found that the four factors studied were significant for the response variables, and a significant model (p < 0.05) was obtained for each variable. The optimal conditions were 8 for pH and 0.01 M, 0.0 6M, 0.01 M for the concentration of TSC, A g N O 3 , and N a B H 4 , respectively. Optimized AgNPs spherical and hemispherical were obtained, and 67.66% of it had a diameter less than 10.30 nm. A minimum bactericidal concentration (MBC) and minimum fungicidal Concentration (MFC) of optimized AgNPs was found against Staphylococcus aureus , Escherichia coli , Escherichia coli AmpC resistant, and Candida albicans at 19.89, 9.94, 9.94, 2.08 μ g/mL, respectively. Furthermore, the lethal concentration 50 ( L C 50 ) of optimized AgNPs was found on 19.11 μ g/mL and 19.60 μ g/mL to Vero and NiH3T3 cells, respectively. Conclusions It was found that the factors studied were significant for the variable responses and the optimization process used was effective to improve the antimicrobial activity of the AgNPs.

Từ khóa


Tài liệu tham khảo

10.1080/02726351.2011.626510

Karwowska E. Antibacterial potential of nanocomposite-based materials- a short review. Nanotechnol Rev. 2016;6(2):243–54. https://doi.org/10.1515/ntrev-2016-0095.

10.1016/j.abb.2016.01.013

10.1016/j.biotechadv.2008.09.002

10.1002/jps.24001

10.1186/s11671-016-1240-0

10.1039/c0md00069h

10.1016/j.nano.2015.11.016

10.1021/ac202452t

Alessio P Aoki PHB Furini LN Aliaga AE Constantino CJL. Spectroscopic Techniques for Characterization of Nanomaterials In: Da Róz AL Ferreira M Leite FdL Osvaldo N OJ editors. Nanocharacterization Techniques. 1st edn. Elsevier Inc.: 2017. p. 65–98. Chap. 3. https://doi.org/10.1016/B978-0-323-49778-7/00003-5.

10.1007/s11095-010-0073-2

10.1016/j.trac.2010.08.008

10.1002/9783527670772

10.1016/j.msec.2019.02.061

10.1016/j.microc.2018.05.017

10.1016/j.powtec.2014.08.049

10.1128/AEM.06513-11

10.1016/j.jhazmat.2013.11.031

Yoon J, Dong Woo L, Choi J. Assessment of Size-Dependent Antimicrobial and Cytotoxic Properties of Silver Nanoparticles. Adv Mater Sci Eng. 2014;2014:1–6. https://doi.org/10.1155/2014/763807.

Zapata-Giraldo J, Mena P, Cuesta D, Galeano B, Mejía M, Botero LE, Ortiz I, Escobar N, Hoyos L. Characterization of silver nanoparticles for potential use as antimicrobial agent. In: VII Congreso Latinoamericano de Ingeniería Biomédica. Bucaramanga: Asociación Colombiana de Ingeniería Biomédica ABIOIN; 2016.

10.1080/08927014.2011.599101

10.1016/j.biomaterials.2009.07.065

10.1016/j.colsurfa.2011.01.031

10.1016/j.colsurfb.2015.02.009

10.1016/j.colsurfa.2019.04.063

Krishnan R Vijay A Vasaviah SK. The MIC and MBC of Silver Nanoparticles against Enterococcus faecalis - A Facultative Anaerobe. J Nanomedicine Nanotechnol. 2015; 06(03). https://doi.org/10.4172/2157-7439.1000285.

10.1016/0022-1759(83)90303-4

10.1086/396235

10.1016/j.saa.2015.04.057

10.1016/j.proeng.2016.06.552

10.1016/j.snb.2013.03.106

Draper NR Smith H. Applied Regression Analysis 3rd edn: Wiley-Interscience; 2014 p. 736. https://doi.org/10.1002/9781118625590.

10.1016/j.cis.2008.09.002

GF P, AS P, NP K, SA K, AI E, TG E, TV F, LM. S. Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles. Int J Nanomedicine. 2014;9(16):1883–89. https://doi.org/10.2147/IJN.S57865.

10.1016/j.molstruc.2016.01.040

Viudez AJ. Síntesis, caracterización y ensamblaje de nanopartículas de oro protegidas por monocapas moleculares. Ph.d. thesis, Universidad de Córdoba. Córdoba: Servicio de Publicaciones de la Universidad de Córdoba; 2011.

10.1016/B978-0-323-42864-4.00006-3

10.1016/j.msec.2017.02.154

10.1088/0957-4484/19/7/075104

10.1302/0301-620X.97B5.33336

10.1016/j.cca.2010.08.016

10.1002/jps.24001

Nuñez-Anita RE, Acosta-Torres LS, Vilar-Pineda J, Martínez-Espinosa JC, De la fuente-Hernández J, Castaño VM. Toxicology of antimicrobial nanoparticles for prosthetic devices. Int J Nanomedicine. 2014;9(1):3999–4006.

10.1002/jin2.26

10.1002/smll.201801219

10.1016/j.jphotobiol.2017.04.036

10.1016/j.msec.2019.04.031