Optimization of algorithms with OPAL

Charles Audet1, Kien-Cong Dang2, Dominique Orban1
1GERAD and Department of Mathematics and Industrial Engineering, Ecole Polytechnique, Montreal, QC, Canada
2GERAD, Montreal, QC, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abramson, M.A., Audet, C.: Convergence of mesh adaptive direct search to second-order stationary points. SIAM J. Optimization 17(2), 606–619 (2006). doi: 10.1137/050638382

Abramson, M.A., Audet, C., Dennis, J.E Jr.: Filter pattern search algorithms for mixed variable constrained optimization problems. Pac. J. Optimization 3(3), 477–500 (2007)

Ansel, J., Chan, C., Wong, Y.L., Olszewski, M., Zhao, Q., Edelman, A., Amarasinghe, S.: Petabricks: A Language and Compiler for Algorithmic Choice. In: ACM SIGPLAN Conference on Programming Language Design and Implementation. Dublin, Ireland (2009). doi: 10.1145/1542476.1542481

Audet, C., Béchard, V., Le Digabel, S.: Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search. J. Glob. Optimization 41(2), 299–318 (2008). doi: 10.1007/s10898-007-9234-1

Audet, C., Dang, C.K., Orban, D.: Algorithmic parameter optimization of the DFO method with the OPAL framework. In: Naono, J.C.K., Teranishi, K., Suda, R. (eds.) Software Automatic Tuning: From Concepts to State-of-the-Art Results, pp. 255–274. Springer, New York (2010). doi: 10.1007/978-1-4419-6935-4_15

Audet, C., Dang, C.K., Orban, D.: Efficient use of parallelism in algorithmic parameter optimization applications. Optimization Lett. 7(3), 421–433 (2013). doi: 10.1007/s11590-011-0428-6

Audet, C., Dennis, J. Jr.: Le Digabel, S.: Trade-off studies in blackbox optimization. Optimization Methods Softw. 27(4–5), 613–624 (2012). doi: 10.1080/10556788.2011.571687

Audet, C., Dennis, J.E Jr.: Analysis of generalized pattern searches. SIAM J. Optimization 13(3), 889–903 (2003). doi: 10.1137/S1052623400378742

Audet, C., Dennis, J.E Jr.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optimization 17(1), 188–217 (2006). doi: 10.1137/040603371

Audet, C., Dennis, J.E Jr.: A progressive barrier for derivative-free nonlinear programming. SIAM J. Optimization 20(1), 445–472 (2009). doi: 10.1137/070692662

Audet, C., Dennis, J.E Jr.: Digabel, S.L.: Globalization strategies for mesh adaptive direct search. Comput. Optimization Appl. 46(2), 193–215 (2010). doi: 10.1007/s10589-009-9266-1

Audet, C., Orban, D.: Finding optimal algorithmic parameters using derivative-free optimization. SIAM J. Optimization 17(3), 642–664 (2006). doi: 10.1137/040620886

Audet, C., Savard, G., Zghal, W.: Multiobjective optimization through a series of single-objective formulations. SIAM J. Optimization 19(1), 188–210 (2008). doi: 10.1137/060677513

Bilmes, J., Asanović, K., Chin, C.W., Demmel, J.: The PHiPAC v1.0 matrix-multiply distribution. Technical Report TR-98-35, International Computer Science Institute, CS Division, University of California, Berkeley (1998)

Booker, A.J., Dennis, J.E Jr.: Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A rigorous framework for optimization of expensive functions by surrogates. Struct. Optimization 17(1), 1–13 (1999). doi: 10.1007/BF01197708

Box, G.E.P.: Evolutionary operation: a method for increasing industrial productivity. Appl. Stat. 6(2), 81–101 (1957)

Clarke, F.H.: Optimization and Nonsmooth Analysis. Reissued in 1990 by SIAM Publications, Philadelphia, as, Vol. 5 in the series Classics in Applied Mathematics. Wiley, New York (1983)

Conn, A.R., Le Digabel, S.: Use of quadratic models with mesh-adaptive direct search for constrained black box optimization. Optimization Methods Softw. 28(1), 139–158 (2013). doi: 10.1080/10556788.2011.623162

Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. MPS/SIAM Book Series on Optimization. SIAM, Philadelphia (2009)

Dang, C.K.: Optimization of algorithms with the OPAL framework. Ph.D. Thesis, École Polytechnique de Montréal, Montréal, Québec, Canada (2012)

Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002). doi: 10.1007/s101070100263

Fermi, E., Metropolis, N.: Numerical solution of a minimum problem. Los Alamos Unclassified Report LA-1492. Los Alamos National Laboratory, Los Alamos (1952)

Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program. Ser. A 91, 239–269 (2002). doi: 10.1007/s101070100244

Gould, N., Orban, D., Toint, P.: CUTEr (and SifDec): a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003). doi: 10.1145/962437.962439

Gould, N.I.M., Orban, D., Sartenaer, A., Toint, P.L.: Sensitivity of trust-region algorithms on their parameters. 40R 3(3), 227–241 (2005). doi: 10.1007/s10288-005-0065-y

Gramacy, R.B., Le Digabel, S.: The Mesh Adaptive Direct Search Algorithm with Treed Gaussian Process Surrogates. Tech. Rep. G-2011-37, Les cahiers du GERAD (2011)

Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. J. Assoc. Comput. Mach. 8(2), 212–229 (1961). doi: 10.1145/321062.321069

Kohonen, T.: The self-organizing map. Neurocomputing 21(1–3), 1–6 (1998). doi: 10.1016/S0925-2312(98)00030-7

Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data. Neural Netw. 15(8–9), 945–952 (2002). doi: 10.1016/S0893-6080(02)00069-2

Kokkolaras, M., Audet, C., Dennis, J.E Jr.: Mixed variable optimization of the number and composition of heat intercepts in a thermal insulation system. Optimization Eng. 2(1), 5–29 (2001). doi: 10.1023/A:1011860702585

Le Digabel, S.: Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans. Math. Softw. 37(4), 44:1–44:15 (2011). doi: 10.1145/1916461.1916468

Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997). doi: 10.1016/S0305-0548(97)00031-2

Orban, D.: Templating and automatic code generation for performance with python. Tech. Rep. G-2011-30, Les cahiers du GERAD (2011)

Pantazi, S., Kagolovsky, Y., Moehr, J.R.: Cluster analysis of wisconsin breast cancer dataset using self-organizing maps. In: Surjàn, G., Engelbrecht, R., Mcnair, P. (eds.) ealth Data in the Information Society, no. 90 in Technology and Informatics. International Congress on Medical Informatics, pp. 431–436. IOS Press, Amsterdam (2002)

Seymour, K., You, H., Dongarra, J.J.: A comparison of search heuristics for empirical code optimization. In: Proceedings of the 2008 IEEE International Conference on Cluster Computing, Third international Workshop on Automatic Performance Tuning (iWAPT 2008), pp. 421–429. Tsukuba International Congress Center, EPOCHAL TSUKUBA, Japan (2008). doi: 10.1109/CLUSTR.2008.4663803

Torczon, V.: On the convergence of pattern search algorithms. SIAM J. Optimization 7(1), 1–25 (1997). doi: 10.1137/S1052623493250780

Vicente, L.N., Custódio, A.L.: Analysis of direct searches for discontinuous functions. Math. Program. 133(1–2), 299–325 (2012). doi: 10.1007/s10107-010-0429-8

Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: a library of automatically tuned sparse matrix kernels. In: Proceedings of SciDAC 2005, Journal of Physics: Conference Series. Institute of Physics Publishing, San Francisco (2005). doi: 10.1088/1742-6596/16/1/071

Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006). doi: 10.1007/s10107-004-0559-y

Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimization of software and the ATLAS project. Parallel Comput. 27(1–2), 3–35 (2001). doi: 10.1016/S0167-8191(00)00087-9