Tối ưu hóa điều kiện saccharification của sinh khối lignocellulosic dưới quá trình tiền xử lý kiềm và thủy phân enzym
Tóm tắt
Tiền xử lý là một bước quan trọng trong việc sản xuất biodiesel thế hệ thứ hai từ các nguyên liệu lignocellulosic thải. Việc thu được biodiesel thông qua các quá trình lên men yêu cầu các điều kiện tiền xử lý phù hợp để đảm bảo mức độ saccharification cao nhất có thể của nguyên liệu đầu vào. Tác động của các tham số quy trình sau đây được nghiên cứu đối với quá trình tiền xử lý kiềm của Salix viminalis L.: nồng độ chất xúc tác (NaOH), nhiệt độ, thời gian tiền xử lý và độ mịn. Để thực hiện điều này, các thí nghiệm đã được tiến hành theo thiết kế Box-Behnken cho bốn yếu tố. Trong quá trình saccharification của sinh khối đã được tiền xử lý, các enzyme cellulolytic được cố định trên đất diatomaceous đã được sử dụng. Dựa trên các kết quả thu được, một mô hình toán học để dự đoán các điều kiện tối ưu của tiền xử lý kiềm được đề xuất. Các điều kiện tối ưu cho quá trình tiền xử lý kiềm được xác lập như sau: độ mịn 0,75 mm, nồng độ chất xúc tác 7%, thời gian tiền xử lý 6 giờ và nhiệt độ 65 °C nếu xem xét hiệu suất saccharification và phân tích chi phí. Tác động của quá trình tiền xử lý đã tối ưu hóa đối với cả thành phần hóa học và sự thay đổi cấu trúc của sáu loại nguyên liệu lignocellulosic khác nhau (willow sinh khối, poplar sinh khối, beech, triticale, cỏ đồng cỏ, bắp) cũng được nghiên cứu. Các hình ảnh SEM của mẫu sinh khối thô và đã được tiền xử lý được bao gồm để theo dõi sự thay đổi cấu trúc sinh khối trong quá trình thủy phân.
Từ khóa
Tài liệu tham khảo
Balat, 2011, Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review, Energy Convers. Manag., 52, 858, 10.1016/j.enconman.2010.08.013
Pimentel, D., Marklein, A., Toth, M.A., Karpoff, M.N., Paul, G.S., McCormack, R., Kyriazis, J., and Krueger, T. (2009). Food versus biofuels: Environmental and economic costs. Hum. Ecol.
(2018, February 28). The Food Systems of the Future Need to Be Smarter, More Efficient. Available online: http://www.fao.org/news/story/en/item/275009/icode/.
Gurram, 2011, Removal of enzymatic and fermentation inhibitory compounds from biomass slurries for enhanced biorefinery process efficiencies, Bioresour. Technol., 102, 7850, 10.1016/j.biortech.2011.05.043
Yeh, 2010, Effect of particle size on the rate of enzymatic hydrolysis of cellulose, Carbohydr. Polym., 79, 192, 10.1016/j.carbpol.2009.07.049
Severian, D. (2004). Hydrolysis of Cellulose and Hemicellulose. Polysaccharides. Structural Diversity and Functional Versatility, CRC Press, Taylor and Francis.
Dworzanski, 2006, Characterization of Lignocellulosic Materials and Model Compounds by Combined Tg/(Gc)/Ft Ir/Ms, Symp. Pyrolysis Nat. Synth. Macromol., 36, 725
Gupta, 2010, Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide, Bioresour. Technol., 101, 8185, 10.1016/j.biortech.2010.05.039
Kumar, 2016, High rate hydrogen fermentation of cello-lignin fraction in de-oiled jatropha waste using hybrid immobilized cell system, Fuel, 182, 131, 10.1016/j.fuel.2016.05.088
Chang, 2000, Fundamental factors affecting biomass enzymatic reactivity, Appl. Biochem. Biotechnol., 84, 5, 10.1385/ABAB:84-86:1-9:5
Wang, 2014, Aviation fuel synthesis by catalytic conversion of biomass hydrolysate in aqueous phase, Appl. Energy, 136, 775, 10.1016/j.apenergy.2014.06.035
Lynd, 2002, Microbial Cellulose Utilization: Fundamentals and Biotechnology, Microbiol. Mol. Biol. Rev., 66, 506, 10.1128/MMBR.66.3.506-577.2002
Mussatto, S.I. (2016). Biomass Pretreatment, Biorefineries, and Potential Products for a Bioeconomy Developement. Biomass Fractionation Technologies for Lignocellulosic Feedstock Based Biorefinery, Elsevier Inc.
Cavalaglio, G., Gelosia, M., D’Antonio, S., Nicolini, A., Pisello, A.L., Barbanera, M., and Cotana, F. (2016). Lignocellulosic ethanol production from the recovery of stranded driftwood residues. Energies, 9.
Nitsos, C., Rova, U., and Christakopoulos, P. (2018). Organosolv fractionation of softwood biomass for biofuel and biorefinery applications. Energies, 11.
Wang, K.T., Jing, C., Wood, C., Nagardeolekar, A., Kohan, N., Dongre, P., Amidon, T.E., and Bujanovic, B.M. (2018). Toward complete utilization of miscanthus in a hot-water extraction-based biorefinery. Energies, 11.
Markou, 2013, Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis, Energies, 6, 3937, 10.3390/en6083937
Łukajtis, R., Kucharska, K., Hołowacz, I., Rybarczyk, P., Wychodnik, K., Słupek, E., Nowak, P., and Kamiński, M. (2018). Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation. Energies, 11.
El-Dalatony, M., Salama, E.-S., Kurade, M., Hassan, S., Oh, S.-E., Kim, S., and Jeon, B.-H. (2017). Utilization of Microalgal Biofractions for Bioethanol, Higher Alcohols, and Biodiesel Production: A Review. Energies, 10.
Kandasamy, M., Hamawand, I., Bowtell, L., Seneweera, S., Chakrabarty, S., Yusaf, T., Shakoor, Z., Algayyim, S., and Eberhard, F. (2017). Investigation of ethanol production potential from lignocellulosic material without enzymatic hydrolysis using the ultrasound technique. Energies, 10.
Hao, 2015, Bio-refining of carbohydrate-rich food waste for biofuels, Energies, 8, 6350, 10.3390/en8076350
Huang, 2009, Understanding the Key Factors for Enzymatic Conversion of Pretreated Lignocellulose by Partial Least Square Analysis, Biotechnol. Prog., 26, 384, 10.1002/btpr.324
Tai, C., Keshwani, D.R., Voltan, D.S., Kuhar, P.S., and Engel, A.J. (2015). Optimal control strategy for fed-batch enzymatic hydrolysis of lignocellulosic biomass based on epidemic modeling. Biotechnol. Bioeng.
Bansal, 2009, Modeling cellulase kinetics on lignocellulosic substrates, Biotechnol. Adv., 27, 833, 10.1016/j.biotechadv.2009.06.005
Xu, 2009, Recent Advancement in Alkaline Pretreatment of Lignocellulosic Biomass, Underst. Key Factors Enzym. Convers., 26, 431
Wang, Z., and Cheng, J.J. (2011). Lime pretreatment of coastal bermudagrass for bioethanol production. Energy Fuels.
Umagiliyage, A.L., Choudhary, R., Liang, Y., Haddock, J., and Watson, D.G. (2015). Laboratory scale optimization of alkali pretreatment for improving enzymatic hydrolysis of sweet sorghum bagasse. Ind. Crops Prod.
Wang, 2011, Modeling biochemical conversion of lignocellulosic materials for sugar production: A review, BioResources, 6, 5282, 10.15376/biores.6.4.5282-5306
Menezes, E.G.T., Carmo, J.R., Alves, G.L.F., Menezes, A.G.T., Guimar, I.C., Queiroz, F., and Pimenta, C.J. (2013). Optimization of Alkaline Pretreatment of Coffee Pulp for Production of Bioethanol. Biotechnol. Prog.
Taher, 2017, Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues, Biotechnol. Prog., 33, 397, 10.1002/btpr.2427
McIntosh, 2010, Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment, Bioresour. Technol., 101, 6718, 10.1016/j.biortech.2010.03.116
Kumar, M., Kumar, D., and Murthy, G.S. (2013). Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production. Murthy Biotechnol. Biofuels, 6.
O’Dwyer, J.P., Zhu, L., Granda, C.B., Chang, V.S., and Holtzapple, M.T. (2008). Neural network prediction of biomass digestibility based on structural features. Biotechnol. Prog.
Mussatto, S.I. (2016). Enzymatic Hydrolysis of Lignocellulosic Residues. Biomass Fractionation Technologies for Lignocellulosic Feedstock Based Biorefinery, Elsevier Inc.
Golan, A.E. (2011). Enhanced enzyme saccharification of cereal corp residues using dilute alkali pretreatment. Cellulase: Types and Action, Mechanism, and Uses, Nova Science Publishers, Inc.
Sierra, R., Garcia, L.A., and Holtzapple, M.T. (2010). Selectivity and Delignification Kinetics for Oxidative and Nonoxidative Lime Pretreatment of Poplar Wood, Part III: Long-Term. Biotechnol. Prog., 1685–1694.
Xu, J., Cheng, J.J., Sharma-Shivappa, R.R., and Burns, J.C. (2010). Sodium hydroxide pretreatment of switchgrass for ethanol production. Energy Fuels.
Sebayang, 2017, Optimization of reducing sugar production from Manihot glaziovii starch using response surface methodology, Energies, 10, 1, 10.3390/en10010035
Lai, 2017, Enhanced enzymatic saccharification of corn stover by in situ modification of lignin with poly (ethylene glycol) ether during low temperature alkali pretreatment, Bioresour. Technol., 244, 92, 10.1016/j.biortech.2017.07.074
2017, Additives enhancing enzymatic hydrolysis of lignocellulosic biomass, Bioresour. Technol., 244, 48, 10.1016/j.biortech.2017.06.132
Singh, 2017, Physico-chemical pretreatment and enzymatic hydrolysis of cotton stalk for ethanol production by Saccharomyces cerevisiae, Bioresour. Technol., 244, 71, 10.1016/j.biortech.2017.07.123
Son, 2017, Microalgae dewatering based on forward osmosis employing proton exchange membrane, Bioresour. Technol., 244, 57, 10.1016/j.biortech.2017.07.086
Kassim, 2016, Dilute alkaline pretreatment for reducing sugar production from Tetraselmis suecica and Chlorella sp. biomass, Process Biochem., 51, 1757, 10.1016/j.procbio.2015.11.027
Kim, 2012, Optimization of alkaline pretreatment conditions for enhancing glucose yield of rice straw by response surface methodology, Biomass Bioenergy, 46, 210, 10.1016/j.biombioe.2012.08.024
Li, 2012, Comparison of different alkali-based pretreatments of corn stover for improving enzymatic saccharification, Bioresour. Technol., 125, 193, 10.1016/j.biortech.2012.08.095
Wan, 2011, Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility, Bioresour. Technol., 102, 6254, 10.1016/j.biortech.2011.02.075
Liu, 2015, Pretreatment of wheat straw with potassium hydroxide for increasing enzymatic and microbial degradability, Bioresour. Technol., 185, 150, 10.1016/j.biortech.2015.02.047
McIntosh, 2011, Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw, Biomass Bioenergy, 35, 3094, 10.1016/j.biombioe.2011.04.018
Bertin, 2014, Mild alkaline pre-treatments loosen fibre structure enhancing methane production from biomass crops and residues, Biomass Bioenergy, 71, 318, 10.1016/j.biombioe.2014.09.025
Gonzales, 2016, Effect of severity on dilute acid pretreatment of lignocellulosic biomass and the following hydrogen fermentation, Int. J. Hydrogen Energy, 41, 21678, 10.1016/j.ijhydene.2016.06.198
Luterbacher, 2015, Modeling enzymatic hydrolysis of lignocellulosic substrates using fluorescent confocal microscopy II: Pretreated biomass, Biotechnol. Bioeng., 112, 32, 10.1002/bit.25328
Singhania, 2013, Pandey Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production, Bioresour. Technol., 127, 500, 10.1016/j.biortech.2012.09.012
Crespo, 2012, Ethanol production by continuous fermentation of d-(+)-cellobiose, d-(+)-xylose and sugarcane bagasse hydrolysate using the thermoanaerobe Caloramator boliviensis, Bioresour. Technol., 103, 186, 10.1016/j.biortech.2011.10.020
Eskicioglu, 2017, Assessment of hydrothermal pretreatment of various lignocellulosic biomass with CO2 catalyst for enhanced methane and hydrogen production, Water Res., 120, 32, 10.1016/j.watres.2017.04.068
Han, 2015, Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors, Bioresour. Technol., 180, 54, 10.1016/j.biortech.2014.12.067
Xie, 2015, Efficient hydrolysis of corncob residue through cellulolytic enzymes from Trichoderma strain G26 and l-lactic acid preparation with the hydrolysate, Bioresour. Technol., 193, 331, 10.1016/j.biortech.2015.06.101
Zhang, 2013, Relationships between cellulosic biomass particle size and enzymatic hydrolysis sugar yield: Analysis of inconsistent reports in the literature, Renew. Energy, 60, 127, 10.1016/j.renene.2013.04.012
Khullar, 2013, Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus, Ind. Crops Prod., 44, 11, 10.1016/j.indcrop.2012.10.015
Cotana, 2015, Preliminary optimization of alkaline pretreatment for ethanol production from vineyard pruning, Energy Procedia, 82, 389, 10.1016/j.egypro.2015.11.814
Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., and Templeton, D. (2008). Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP), NREL. Issue Date 17 July 2005; NREL/TP-510-42619.
Wang, 2017, Ultrasound assisted alkaline pretreatment to enhance enzymatic saccharification of grass clipping, Energy Convers. Manag., 149, 409, 10.1016/j.enconman.2017.07.042
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., and Templeton, D. (2008). Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples, Laboratory Analytical Procedure (LAP), NREL.
Duque, 2013, Optimization of integrated alkaline-extrusion pretreatment of barley straw for sugar production by enzymatic hydrolysis, Process Biochem., 48, 775, 10.1016/j.procbio.2013.03.003
Cheng, K.K., Cai, B.Y., Zhang, J.A., Ling, H.Z., Zhou, Y.J., Ge, J.P., and Xu, J.M. (2008). Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochem. Eng. J.
Kumar, 2009, Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies, Bioresour. Technol., 100, 3948, 10.1016/j.biortech.2009.01.075
Wang, 2014, Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: Evaluating the pretreatment flexibility on feedstocks and particle sizes, Bioresour. Technol., 166, 420, 10.1016/j.biortech.2014.05.088
Iqbal, 2015, Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment, Bioresour. Technol., 180, 360, 10.1016/j.biortech.2014.12.107
Xie, 2011, Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate, Bioresour. Technol., 102, 4938, 10.1016/j.biortech.2011.01.050
Lin, 2015, Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation, Bioresour. Technol., 196, 250, 10.1016/j.biortech.2015.07.097
Alriksson, 2013, Bioconversion of lignocellulose: inhibitors and detoxification, Biotechnol. Biofuels, 6, 16, 10.1186/1754-6834-6-16
Perego, 1994, Acid hemicellulose hydrolysates: Physical treatments and continuous immobilized-cell fermentations, Bioprocess Eng., 10, 35, 10.1007/BF00373533
Zha, 2012, Inhibitory Compounds in Lignocellulosic Biomass Hydrolysates during Hydrolysate Fermentation Processes, J. Bioprocess. Biotech., 2, 1, 10.4172/2155-9821.1000112
Kundu, 2015, Bioethanol production from oxalic acid-pretreated biomass and hemicellulose-rich hydrolysates via a combined detoxification process, Fuel, 161, 129, 10.1016/j.fuel.2015.08.045
Aksu, 2015, Ethanol fermentation characteristics of Pichia stipitis yeast from sugar beet pulp hydrolysate: Use of new detoxification methods, Fuel, 158, 793, 10.1016/j.fuel.2015.06.016
Mussatto, 2008, Effects of medium supplementation and pH control on lactic acid production from brewer’s spent grain, Biochem. Eng. J., 40, 437, 10.1016/j.bej.2008.01.013
Sindhu, 2016, Bioresource Technology Development of a combined pretreatment and hydrolysis strategy of rice straw for the production of bioethanol and biopolymer, Bioresour. Technol., 215, 110, 10.1016/j.biortech.2016.02.080
Chandel, 2011, Detoxification of lignocellulosic hydrolysates for improved bioethanol production, Biofuel Prod., 2012, 989572
Pettersson, 2001, Mechanism of substrate inhibition in cellulose synergistic degradation, Eur. J. Biochem., 268, 4520, 10.1046/j.1432-1327.2001.02377.x
Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., and Templeton, D. (2008). Determination of total solids in biomass and total dissolved solids in liquid process samples. Natl. Renew. Energy Lab., 9, NREL/TP-510-42621.