Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tối ưu hóa sản xuất L-asparaginase bởi Serratia marcescens (NCIM 2919) dưới quá trình lên men rắn sử dụng bã dầu dừa
Tóm tắt
Nghiên cứu hiện tại tập trung vào việc sử dụng các sản phẩm phụ từ rác thải nông nghiệp được tạo ra từ nhà máy dầu để sản xuất enzyme L-asparaginase bằng cách sử dụng Serratia marcescens dưới điều kiện lên men rắn. Các phương pháp cổ điển và thống kê được áp dụng để tối ưu hóa các biến quá trình và kết quả được so sánh. Phương pháp cổ điển một yếu tố tại một thời điểm (OFAT) và phương pháp bề mặt phản ứng (RSM) được sử dụng để tối ưu hóa quy trình lên men. Khi được sử dụng làm nguồn carbon duy nhất trong SSF, bã dầu dừa (COC) cho thấy sản lượng enzyme tối đa. Các giá trị tối ưu của lượng chất nền, độ ẩm ban đầu, pH và nhiệt độ lần lượt được tìm thấy là 6 g, 40%, 6 và 35°C theo phương pháp tối ưu hóa cổ điển với hoạt động enzyme tối đa đạt 3.87 (U gds-1). Hoạt động enzyme tối đa 5.86 U gds-1 đạt được ở các điều kiện tối ưu dự đoán với lượng chất nền 7.6 g COC, độ ẩm ban đầu của chất nền 50%, nhiệt độ 35.5°C và pH 7.4. Kết quả xác thực chứng minh rằng có mối quan hệ tốt giữa mô hình thực nghiệm và mô hình dự đoán. Phương pháp tối ưu hóa RSM làm tăng sản xuất enzyme lên 33% khi so với phương pháp cổ điển. Việc sử dụng bã dầu dừa làm chất nền chi phí thấp trong SSF để sản xuất L-asparaginase làm cho quá trình này có tính kinh tế và cũng giảm ô nhiễm môi trường bằng cách chuyển đổi chất thải rắn từ nhà máy dầu thành một sản phẩm sinh học hữu ích.
Từ khóa
#L-asparaginase #Serratia marcescens #lên men rắn #bã dầu dừa #tối ưu hóa sản xuấtTài liệu tham khảo
Ramachandran S, Patel AK, Nampoothiri KM, Francis F, Nagy V, Szakacs G, Pandey A: Coconut oil cake - a potential raw material for the production of α-amylase. Bioresour Technol. 2004, 93: 169-174. 10.1016/j.biortech.2003.10.021.
Ramachandran S, Singh SK, Larroche C, Soccol CR, Pandey A: Oil cakes and their biotechnological applications – A review. Bioresour Technol. 2007, 98: 2000-2009. 10.1016/j.biortech.2006.08.002.
Sandhya C, Sumantha A, Szakacs G, Pandey A: Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem. 2005, 40: 2689-2694. 10.1016/j.procbio.2004.12.001.
Bogar B, Szakacs G, Pandey A, Sabu A, Linden JC, Tengerdy RP: Production of phytase by Mucor racemosus in solid-state fermentation. Biotechnol Progr. 2003, 19: 312-319. 10.1021/bp020126v.
Benjamin S, Pandey A: Coconut cake: a potent substrate for production of lipase by Candida rugosa in solid-state fermentation. Acta Biotechnol. 1997, 17: 241-251. 10.1002/abio.370170308.
Selvakumar P, Pandey A: Solid-state fermentation for the synthesis of inulinase from Staphylococcus sp. and Kluyveromyces marxianus. Process Biochem. 1999, 34: 851-855. 10.1016/S0032-9592(99)00008-4.
Umesh K, Shamsher S, Wamik A: Pharmacological and clinical evaluation of L-asparaginase in the treatment of Leukemia. Crit Rev Oncol Hematol. 2007, 61: 208-221. 10.1016/j.critrevonc.2006.07.009.
Manna S, Sinha A, Sadhukhan R, Chakrabarty SL: Purification, characterization and antitumor activity of L-asparaginase isolated from Pseudomonas stutzeri MB-405. Curr Microbiol. 1995, 30: 291-298. 10.1007/BF00295504.
Adamson RH, Fabro S: Antitumor activity and other biologic properties of L-asparaginase. Cancer Chemother Rep. 1968, 52: 617-626.
Baskar G, Renganathan S: Design of experiments and artificial neural network linked genetic algorithm for modeling and optimization of L-asparaginase production by Aspergillus terreus MTCC 1782. Biotechnol Bioprocess Eng. 2011, 16: 50-58. 10.1007/s12257-010-0119-7.
Mishra A: Production of L-asparaginase, an anticancer agent, from Aspergillus niger using agricultural waste in solid state fermentation. Appl Biochem Biotechnol. 2006, 135: 3-42.
Kumar S, Dasu VV, Pakshirajan K: Localization and production of novel L-asparaginase from Pectobacterium carotovorum MTCC 1428. Process Biochem. 2010, 45: 223-229. 10.1016/j.procbio.2009.09.011.
Seyedeh LDK, Iran A, Vida M: Production of L- asparaginase from Escherichia coli ATCC 11303: Optimization by response surface methodology. Food Bioprod Process. 2011, 89: 315-321. 10.1016/j.fbp.2010.11.002.
Heinemann B, Howard AJ: Production of tumor-inhibitory L-asparaginase by submerged growth of Serratia marcescens. Appl Microbiol. 1969, 18: 550-554.
Kil JO, Kim GN, Park I: Extraction of extracellular L-asparaginase from Candida utilis. Biosci Biotechnol Biochem. 1995, 59: 749-750. 10.1271/bbb.59.749.
Ramakrishnan MS, Joseph R: Characterization of an extracellular asparaginase of Rhodosporidium toruloides CBS14 exhibiting unique physicochemical properties. Can J Microbiol. 1996, 42: 316-325. 10.1139/m96-047.
Saleem Basha N, Rekha R, Komala M, Ruby S: Production of extracellular anti-leukaemic enzyme L-asparaginase from marine Actinomycetes by solid state and submerged fermentation: Purification and Characterization. Trop J Pharm Res. 2009, 8: 353-360.
Datar R: Economics of primary separation steps in relation to fermentation and genetic engineering. Process Biochem. 1986, 21: 19-26.
Pandey A, Selvakumar P, Soccol CR, Nigam P: Solid state fermentation for the production of industrial enzymes. Curr Sci. 1999, 77: 149-162.
El-Bessoumy AA, Sarhan M, Mansour J: Production, isolation and purification of L-asparaginase from Pseudomonas aeruginosa 50071 using solid state fermentation. J Biochem Mol Biol. 2004, 37: 387-393. 10.5483/BMBRep.2004.37.4.387.
Rojan P, John K, Nampoothiri M, Pandey A: Solid-state fermentation for L-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochem. 2006, 41: 759-763. 10.1016/j.procbio.2005.09.013.
Corona A, Sa’ez D, Agosin E: Effect of water activity on gibberellic acid production by Gibberella fujikuroi under solid-state fermentation conditions. Process Biochem. 2005, 40: 2655-2658. 10.1016/j.procbio.2004.11.008.
Vandenberghe LPS, Soccol CR, Pandey A, Lebeault JM: Solid-state fermentation for the synthesis of citric acid by Aspergillus niger. Bioresour Technol. 2000, 74: 175-178. 10.1016/S0960-8524(99)00107-8.
Sarada I, Sridhar P: Nutritional improvement for Cephamycin C fermentation using a superior strain of Streptomyces clavuligerus. Process Biochem. 1998, 33: 317-322. 10.1016/S0032-9592(97)00086-1.
Sircar A, Sridhar P, Das PK: Optimization of solid state medium for the production of clavulanic acid by Streptomyces clavuligerus. Process Biochem. 1998, 33: 283-289. 10.1016/S0032-9592(97)00058-7.
Abdel-Fattah YR, Olama ZA: L-asparaginase production by Pseudomonas aeruginosa in solid-state culture: Evaluation and optimization of culture conditions using factorial designs. Process Biochem. 2002, 38: 115-122. 10.1016/S0032-9592(02)00067-5.
Sharmila G, Nidhi B, Muthukumaran C: Sequential statistical optimization of red pigment production by Monascus purpureus (MTCC 369) using potato powder. Ind Crop Prod. 2013, 44: 158-164.
Wriston JC, Yellin TO: L-asparaginase: a review. Adv Enzymol Relat Areas Mol Biol. 1973, 39: 185-248.
Box GEP, Behnken DW: Some new three level designs for the study of quantitative variables. Technometrics. 1960, 2: 455-475. 10.1080/00401706.1960.10489912.
Lonsane BK, Ghildyal NP, Budiatman S, Ramakrishna SV: Engineering aspects of solid-state fermentation. Enzyme Microb Technol. 1985, 7: 258-265. 10.1016/0141-0229(85)90083-3.
Liboshi Y, Papst PJ, Hunger SP, Terada N: L-asparaginase inhibits the rapamycine-targeted signaling pathway. Biochem Biophys Res Commun. 1999, 260: 534-539. 10.1006/bbrc.1999.0920.
Roberts J, Holcenberg IS, Dolwy WC: Crystallization and properties of Achromobacteriacae glutaminase, asparaginase with antitumor activity. J Biol Chem. 1972, 247: 84-90.
Sobis M, Mikucki J: Staphylococcal L-asparaginase: Enzyme kinetics. Acta Microbiol Pol. 1991, 40: 143-152.
Maladkar NK, Singh VK, Naik SR: Fermentative production and isolation of L-asparaginase from Erwinia cartovora EC-113. Hindustan Antibiot Bull. 1993, 35: 77-86.
Myers RH, Montgomery DC: Response surface methodology: Process and product optimization using designed experiments. 1995, New York: John Wiley & Sons
Bas D, Boyaci IH: Modeling and optimization I: Usability of response surface methodology. J Food Eng. 2007, 78: 836-845. 10.1016/j.jfoodeng.2005.11.024.
Muralidhar RV, Chirumamila RR, Marchant R, Nigam P: A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochem Eng J. 2001, 9: 17-23. 10.1016/S1369-703X(01)00117-6.