Optimal economic operation of isolated community microgrid incorporating temperature controlling devices

Bo Hu1, He Wang1, Sen Yao1
1State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, China

Tóm tắt

With the increasing connection of controllable devices to isolated community microgrid, an economic operation model of isolated community microgrid based on the temperature regulation characteristics of temperature controlling devices composed of wind turbine, micro-gas turbine, energy storage battery and heat pump is proposed. With full consideration of various economic costs, including fuel cost, start-stop cost, energy storage battery depletion expense and penalty for wind curtailment, the model is solved by hybrid particle swarm optimization (HPSO) algorithm. The optimal output of the micro-sources and total operating cost of the system in the scheduling cycle are also obtained. The case study demonstrates that temperature adjustment of temperature controlling devices can adjust the power load indirectly and increase the schedulability of the isolated community microgrid, and reduce the operating cost of the microgrid.

Tài liệu tham khảo

Lu, Z., Wang, C., Mim, Y., Zhou, S., Lv, J., & Wang, Y. (2007). On the Research of Microgrid[J]. Automation of Electric Power Systems, 31(19), 100–107.

Lasseter R, Akhil A, Marnay C, et al. The CERTS microgrid concept[J]. White paper for Transmission Reliability Program, Office of Power Technologies, US Department of Energy, 2002, 2(3):30. http://pserc.wisc.edu/documents/research_documents/certs_documents/certs_publications/certs_microgrid/certsmicrogridwhitepaper.pdf

Xu Lizhong, Yang Guangya, Xu. Zhao, E. Al. Combined scheduling of electricity and heat in a microgrid with volatile wind power[J]. Automation of Electric Power Systems, 2011, 35(9): 53–60

Li, Z., Zhang, F., Liang, J., Yun, Z., & Zhang, J. (2015). Optimization on Microgrid With Combined Heat and Power System [J]. Proceedings of the CSEE, 35(14), 3569–3576.

Peng, C., Xie, P., Zhan, J., & Sun, H. (2014). Robust Economic Dispatch of Microgrid Using Improved Bacterial Foraging Algorithm [J]. Power System Technology, 38(09), 2392–2398.

Wang, R., Gu, W., & Wu, Z. (2011). Economic and Optimal Operation of a Combined Heat and Power Microgrid with Renewable Energy Resources[J]. Automation of Electric Power Systems, 35(08), 22–27.

Wu, X., Wang, X., Bie, Z., & Wang, J. (2013). Economic operation of microgrid with combined heat and power system[J]. Electric Power Automation Equipment, 33(08), 1–6.

Guo, Y., Hu, B., Wan, L., Xie, K., Yang, H., & Shen, Y. (2015). Short-term Economic Scheduling of CHP Microgrid Incorporating Heat Pump [J]. Automation of Electric Power Systems, 39(14), 16–22.

Katipamula S, L. N. Evaluation of residential HVAC control strategies for demand response programs[J]. Transactions-american society of heating refrigerating and air conditioning engineers, 2006, 112(1): 535.

Kou, B., Yang, T., Zhang, X., Zhang, Q., Liu, W., & Ge, J. (2007). A New Hybrid Particle Swarm Optimization Based on Crossover and Mutation [J. Computer Engineering and Applications, 43(17), 85–88.