Hệ thống sản xuất - tồn kho liên tục tối ưu chịu rủi ro thiếu hàng

Springer Science and Business Media LLC - Tập 317 - Trang 777-804 - 2016
Jim Shi1
1Tuchman School of Management, New Jersey Institute of Technology, University Heights, Newark, USA

Tóm tắt

Bài báo này nghiên cứu một hệ thống sản xuất - tồn kho với chế độ xem liên tục, có tỷ lệ sản xuất không đổi và nhu cầu theo phân phối Poisson hợp thành, trong đó chi phí của hệ thống được đánh giá dựa trên chi phí lưu kho và hình phạt thiếu hàng. Đối với bất kỳ tồn kho ban đầu nào, chúng tôi đưa ra công thức biểu diễn đóng cho hàm chi phí chiết khấu kỳ vọng cho đến khi xảy ra tình trạng thiếu hàng. Chúng tôi định lượng rủi ro thiếu hàng theo thời gian trung bình để xảy ra thiếu hàng. Mục tiêu là xác định tỷ lệ sản xuất tối ưu nhằm tối thiểu hóa chi phí hệ thống chiết khấu kỳ vọng dưới điều kiện một mức độ rủi ro thiếu hàng nhất định. Với sự hỗ trợ của các dạng rõ ràng về rủi ro thiếu hàng và hàm chi phí, chúng tôi trình bày một thuật toán tính toán hiệu quả cho giải pháp tối ưu. Đối với các trường hợp đặc biệt có hàm phạt thiếu hàng tỷ lệ, nếu nhu cầu tuân theo phân phối mũ, chúng tôi có một biểu thức đóng cho chi phí chiết khấu kỳ vọng. Một số nghiên cứu định lượng được thực hiện để minh họa kết quả của chúng tôi với những hiểu biết sâu hơn. Về mặt định lượng, chúng tôi chỉ ra rằng việc giảm thiểu rủi ro thiếu hàng là vô cùng tốn kém, đặc biệt khi rủi ro thiếu hàng tương đối thấp. Kết quả của chúng tôi làm sáng tỏ việc kiểm soát rủi ro tồn kho và tối ưu hóa chi phí. Các kết quả chính và thuật toán đã phát triển có thể được ứng dụng để hỗ trợ các nhà sản xuất liên tục, đặc biệt là các công ty dược phẩm, trong việc Xác thực Quy trình Sản xuất của họ.

Từ khóa

#hệ thống sản xuất - tồn kho #rủi ro thiếu hàng #chi phí chiết khấu kỳ vọng #thuật toán tối ưu hóa #nghiên cứu định lượng

Tài liệu tham khảo

Archibald, B., & Silver, E. (1978). \((s, S)\) policy under continuous review and discrete compound Poisson demands. Management Science, 24, 899–909. Asmussen, S. (2000). Ruin probabilities. Advanced series on statistical science & applied probability. Singapore: World Scientific. Beamon, B. M., & Chen, V. C. (2001). Performance analysis of conjoined supply chains. International Journal of Production Research, 39(14), 3195–3218. Biotech/Biomedical: Cell-free protein production. Membrane & Separation Technology News. April 1st, 1997. Boxma, O. J., Löpker, A., & Perry, D. (2011). Threshold strategies for risk processes and their relation to queueing theory. Journal of Applied Probability, 48A(Special volume), 29–38. Boxma, O. J., Frostig, E., & Perry, D. (2015). A reinsurance risk model with a threshold coverage policy—The Gerber–Shiu penalty function. Working paper. Brennan, Z. (2015). FDA calls on manufacturers to begin switch from batch to continuous production. In in-Pharma Technologist, May 1, 2015. De Kok, A. G. (1985). Approximations for a lost-sales production/inventory control model with service level constraints. Management Science, 31, 729–737. De Kok, A. G. (1987). Approximations for operating characteristics in a production-inventory model with variable production rate. European Journal of Operational Research, 29(3), 286–297. De Kok, A. G., Tijms, H. C., & Van der Duyn Schouten, F. A. (1984). Approximations for the single-product production-inventory problem with compound Poisson demand and service level constraints. Advances in Applied Probability, 16, 378–401. FDA. (2011). Guidance for industry, process validation: General principles and practices, CDER. Federgruen, Awi, & Schechner, Zvi. (1983). Cost formulas for continuous review inventory models with fixed delivery lags. Operations Research, 31–5, 957–965. Feldman, R. (1975). A continuous review \((s, S)\) inventory system in a random environment. Journal of Applied Probability, 15, 654–659. Gerber, H. U., & Shiu, E. S. W. (1998). On the time value of ruin. North American Actuarial Journal, 2, 48–78. Graves, S. C. (1982). The application of queueing theory to continuous perishable inventory systems. Management Science, 28, 400–406. Graves, S. C., & Keilson, J. (1981). The compensation method applied to a one-product production inventory model. Mathematics of Operations Research, 6, 246–262. Gullu, R., Jackson, P. L. (1993). On the continuous time capacitated production/inventory problem with no set up costs. ORIE technical reports. Haigney, S. (2013). The lifecycle change of process validation and analytical testing. Biopharm International, 26(3), 24–26. Katehakis, M. N., Melamed, B., & Shi, J. (2015). Optimal replenishment rate for inventory systems with compound Poisson demands and lost-sales: A direct treatment of time-average cost. Annals of Operations Research. doi:10.1007/s10479-015-1998-y. Lee, C. F., & Shi, J. (2010). Application of alternative ODE in finance and economics research. Handbook of quantitative finance and risk management (pp. 1293–1300). New York: Springer. Malhotra, G. (2015). Continuous Process in pharmaceutical manufacturing: Considerations, nuances and challenges. Contract Pharma. Markarian, J. (2014). Process validation for continuous manufacturing processes. Pharmtech. Nov 02, 2014. http://www.pharmtech.com. Minner, Stefan, & Silver, E. A. (2007). Replenishment policies for multiple products with compound-Poisson demand that share a common warehouse. International Journal of Production Economics, 108(1–2), 388–398. Pauwels, K., Huys, I., Casteels, M., & Simians, S. (2014). Drug shortages in European countries: A trade-off between market attractiveness and cost containments. BMC Health Services Research, 14(1), 438. Perry, D. (2011). The G/M/1 queue. In Wiley encyclopedia of operations research and management science. doi:10.1002/9780470400531.eorms0880. Perry, D., & Stadje, W. (2002). Exact distributions in a jump-diffusion storage model. Probability in the Engineering and Informational, 16(1), 19–27. Perry, D., & Stadje, W. (2003). Duality of dams via mountain processes. Operations Research Letters, 31, 451–458. Perry, D., Stadje, W., & Zacks, S. (2005). Sporadic and continuous clearing policies for a production/inventory system under an M/G demand process. Mathematics of Operations Research, 30(2), 354–368. Presman, E., & Sethi, S. P. (2006). Inventory models with continuous and Poisson demands and discounted and average costs. Production and Operations Managment, 15, 279–293. Rao, S., & Goldsby, T. J. (2009). Supply chain risks: A review and typology. International Journal of Logistics Management, 20(1), 97–123. Richards, F. R. (1975). Comments on the distribution of inventory position in a continuous-review \((s, S)\) inventory system. Operations Research, 23, 366–371. Sahin, I. (1979). On the stationary analysis of continuous review \((s, S)\) inventory systems with constant lead times. Operation Research, 27, 717–730. Sahin, I. (1983). On he continuous review \((s, S)\) inventory model under compound renewal demand and random lead times. Journal of Applied Probability, 20, 213–219. Schwalje, H. (2012). Trust, but verify (continuously): FDA’s process validation guidance calls for continuous process verification. Here is how to do it and how automation can help. Pharma Manufacturing. http://www.pharmamanufacturing.com/articles/2012/140/. Shi, J., Katehakis, M. N., & Melamed, B. (2013). Martingale methods for pricing inventory penalties under continuous replenishment and compound renewal demands. Annals of Operations Research, 208(1), 593–612. Shi, J., Katehakis, M. N., Melamed, B., & Xia, Y. (2014). Optimal continuous replenishment for a production-inventory system with compound Poisson demands and lost-sales. Operations Research, 6(5), 1048–1063. Silver, E. A. (1970). A modified formula for calculating customer service under continuous inventory review. AIIE Transactions, 2(3), 241–245. Springael, J., & Nieuwenhuyse, I. V. (2005). A lost sales inventory model with a compound Poisson demand pattern. Working Papers 2005, University of Antwerp, Faculty of Applied Economics. Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of Production Economics, 103(2), 451–488. Thompstone, R., & Silver, E. (1975). A coordinated inventory control system for compound Poisson demand and zero lead time. International Journal of Production Research, 13, 581–602. Tijms, H. C. (1972). Analysis of (s, S) inventory models. Amsterdam: Mathematich Centrum. Tijms, H. C. (2003). A first course in stochastic models (2nd ed.). New York: Wiley. Van Houtum, G. J., & Zijm, W. H. M. (2000). On the relationship between cost and service models for general inventory systems. Statistica Neerlandica, 54(2), 127–147. van Ommen, J. R., Kooijman, D., de Niet, M., Talebi, M., & Goulas, A. (2015). Continuous production of nanostructured particles using spatial atomic layer deposition. Journal of Vacuum Science & Technology A, 33(2), 021513. Ventola, C. L. (2011). The drug shortage crisis in the United States: Causes, impact, and management strategies. Pharmacy and Therapeutics, 36(11), 740. Whitford, W., Ludlow, J. W., & Cadwell, J. S. (2015). Continuous production of exosomes: Utilizing the technical advantages of hollow-fiber bioreactor technology. Genetic Engineering & Biotechnology New, 35(16). http://www.genengnews.com. Yu, L. (2016). Continuous manufacturing has a strong impact on drug quality. FDA Voice, April 12, 2016. http://blogs.fda.gov/FDAvoice/index.php. Zacks, S., Perry, D., Bshouty, D., & Bar-Lev, S. (1999). Distributions of stopping times for compound Poisson processes with positive jumps and linear boundaries. Stochastic Models, 15(1), 89–101. Zipkin, P. (1986). Inventory service-level measures: Convexity and approximation. Management Science, 32(8), 975–981.