Optimal Lehmer Mean Bounds for the Toader Mean
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alzer H.: Bestmögliche Abschätzungen für spezielle Mittelwerte. Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 23(1), 331–346 (1993)
Alzer, H.: Über Lehmers Mittelwertfamilie. Elem. Math. 43(2), 50–54 (1988)
Alzer H., Qiu S.L.: Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172(2), 289–312 (2004)
Anderson G.D., Vamanamurthy M.K., Vuorinen M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. John Wiley & Sons, New York (1997)
Costin I., Toader Gh.: Generalized inverses of Lehmer means. Automat. Comput. Appl. Math. 14(1), 111–117 (2005)
Liu Zh.: Remark on inequalities between Hölder and Lehmer means. J. Math. Anal. Appl. 247(1), 309–313 (2000)
Qiu, S.L., Shen, J.M.: On two problems concerning means. J. Hangzhou Inst. Electron. Eng. 17(3), 1–7 (1997) (in Chinese)
Stolarsky K.B.: Hölder means, Lehmer means and x −1 log coshx. J. Math. Anal. Appl. 202(3), 810–818 (1996)
Toader Gh.: Some mean values related to the arithmetic-geometric mean. J. Math. Anal. Appl. 218(2), 358–368 (1998)
Toader S., Toader Gh.: Complementaries of Greek means with respect to Lehmer means. Automat. Comput. Appl. Math. 15(2), 315–320 (2006)
Vuorinen M.: Hypergeometric functions in geometric function theory, Special functions and differential equations (Madras, 1997), pp. 119–126. Allied Publishers, New Delhi (1998)