Optimal Lehmer Mean Bounds for the Toader Mean

Results in Mathematics - Tập 61 Số 3-4 - Trang 223-229 - 2012
Yu‐Ming Chu1, Miao-Kun Wang2
1Huzhou Teachers’ College
2Department of Mathematics, Huzhou Teachers College, Huzhou, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alzer H.: Bestmögliche Abschätzungen für spezielle Mittelwerte. Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 23(1), 331–346 (1993)

Alzer, H.: Über Lehmers Mittelwertfamilie. Elem. Math. 43(2), 50–54 (1988)

Alzer H., Qiu S.L.: Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172(2), 289–312 (2004)

Anderson G.D., Vamanamurthy M.K., Vuorinen M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. John Wiley & Sons, New York (1997)

Costin I., Toader Gh.: Generalized inverses of Lehmer means. Automat. Comput. Appl. Math. 14(1), 111–117 (2005)

Liu Zh.: Remark on inequalities between Hölder and Lehmer means. J. Math. Anal. Appl. 247(1), 309–313 (2000)

Qiu, S.L., Shen, J.M.: On two problems concerning means. J. Hangzhou Inst. Electron. Eng. 17(3), 1–7 (1997) (in Chinese)

Stolarsky K.B.: Hölder means, Lehmer means and x −1 log coshx. J. Math. Anal. Appl. 202(3), 810–818 (1996)

Toader Gh.: Some mean values related to the arithmetic-geometric mean. J. Math. Anal. Appl. 218(2), 358–368 (1998)

Toader S., Toader Gh.: Complementaries of Greek means with respect to Lehmer means. Automat. Comput. Appl. Math. 15(2), 315–320 (2006)

Vuorinen M.: Hypergeometric functions in geometric function theory, Special functions and differential equations (Madras, 1997), pp. 119–126. Allied Publishers, New Delhi (1998)

Wassell S.R.: Rediscovering a family of means. Math. Intell. 24(2), 58–65 (2002)